
2 

TECHNICAL SPECIFICATIONS OF THE 
PARALLAX PROPELLER

The Propeller Experiment Controller (PEC) is designed around the capabil-
ities of the Parallax Propeller microcontroller. In this chapter, we will provide 
an overview the Propeller’s hardware. We will not provide a comprehensive de-
scription of the Propeller’s features, instead we will offer an informative frame-
work as a necessary foundation for later discussion of the PEC. The Propeller 
Datasheet (Parallax Semiconductor, 2012) and Propeller Manual (Martin, 2011) 
should remain the primary reference on the technical specifications of the Pro-
peller. To make the most of this chapter, the reader should have a basic under-
standing of electronics. Many introductory resources are available online (see 
Appendix B), including Parallax’s website.

Hardware Overview

The Parallax Propeller is an 80 MHz microcontroller with 32 I/O (input/
output) pins and eight independent, 32-bit processors that runs at 3.3 volts of 
direct current (VDC). Microcontrollers, like the Propeller, are small, simple 
computers contained within a single chip. They are designed to interface with 
a variety of external devices, and often act as the control centers of everyday 
electronics such as remote controls, computer mice, microwaves, and thermo-
stats. In behavioral research, microcontrollers may independently control an 
experimental apparatus, or indirectly relay instructions and information from a 
computer. Figure 2.1 shows an image of the Propeller. The entire microcontrol-
ler is about the size of a stamp, at 10 x 10 x 1.4 mm.

7



PROPELLER EXPERIMENT CONTROLLER8

Figure 2.1: The Parallax Propeller microcontroller.
 

Although the Propeller can be purchased as a single chip, Propeller devel-
opment boards are a good option for beginners, prototyping, and small pro-
duction runs. In addition to the Propeller microcontroller, development boards 
typically contain an EEPROM (electrically erasable programmable read-only 
memory) that can be used to load a program to the Propeller, a crystal oscillator 
that enhances the Propeller’s ability to accurately keep track of time, and con-
nections and related circuitry to facilitate connecting the Propeller to a comput-
er and power supply. Some development boards also have special connections 
to allow the Propeller to connect to computer monitors, keyboards, mice, and 
speakers. In order to get the most out of the PEC, an SD (secure digital) card 
is required. The Propeller ASC+ and the Propeller DNA development boards 
both offer the standard components and an SD card connection in a convenient 
package. Chapter 4 provides more information about obtaining a Propeller mi-
crocontroller and other required hardware.

Input/Output Pins

The Propeller has 32 input/output (I/O) pins. Each I/O pin can be connected 
to an external device that will act as an input or an output. Input devices are 
used by the Propeller to detect the world, and can record the activity of subjects, 
environmental variables, or commands from the user. Output devices are used 



Technical Specifications of the Parallax Propeller 9

by the Propeller to affect the world, and can present stimuli or consequences to 
subjects, control environmental variables, or present information to the user. 
For the sake of clarity, we will also classify external devices as digital, analog, 
or complex. 

Digital devices only exist in an off or on state. The state of a digital device 
describes the absence or presence of voltage flowing through a circuit and can 
be represented in binary by a 0 or 1. Digital input devices often include equip-
ment like levers, switches, and infrared beam-break sensors. Once a digital 
input device is connected to an I/O pin, the Propeller can determine the state of 
the input device by detecting if voltage is flowing through the input circuit and 
into the I/O pin. Digital output devices include lights, speakers, feeders, shock 
grids, heaters, fans, motors, and more. When a digital output device is connected 
to an I/O pin, the Propeller can send voltage through the I/O pin to turn that 
device off or on. I/O pins can also alternate between input and output states; 
this may affect the behavior of the device connected to the pin. For example, a 
piezo transducer used as an output transmits sound, while it detects sound and 
vibration when used as an input. 

Analog devices are not limited to a simple off or on state. Analog information 
is represented by a range of numbers, such as 0–255, instead of 0 or 1. An analog 
input may record a variable such as how much voltage is flowing through a cir-
cuit, or how much infrared light is hitting a sensor. In behavioral research, analog 
input can be used to record variables such as muscle contractions on an electro-
myography (EMG) sensor, how hard a subject is pressing a lever, or how close a 
subject is to the end of a runway. Analog outputs may include precise control of 
motor speed, brightness of a light, or the voltage of a shock grid. Many analog 
devices can also be used digitally, although less information or control is avail-
able through digital means. All I/O pins on a Propeller are technically digital, 
however, several techniques allow the Propeller to be used with analog devices. 
Analog input can be achieved using an analog-to digital-converter (ADC) chip, 
while analog output can be emulated using pulse-width modulation (PWM) 
techniques. See Chapter 8 for examples of some of these techniques.

Complex devices are not easily categorized in the digital or analog category. 
Although these devices may use digital or analog techniques, the Propeller in-
terfaces with each complex device in a unique manner, which may require use 
of multiple I/O pins. Some complex devices use chip-to-chip communication 
protocols, such as inter-integrated-circuit (I2C), serial communication, or serial 
peripheral interface (SPI) protocols. Using such communication protocols, 
chips send digital signals in a rapid pattern that represents complex informa-
tion. Communication protocols can be used by complex devices that function 
as either an input or an output. For example, an electronic thermometer may 
function as an input, sending information regarding temperature, in degrees 
Celsius, to the Propeller using an I2C protocol. The Propeller then has access to 



PROPELLER EXPERIMENT CONTROLLER10

temperature data that cannot be represented by a simple 0 or 1. Alternatively, an 
audio file player chip may act as an output device and play specific audio files as 
instructed by the Propeller via an SPI protocol. Some complex devices also use 
communication protocols to act as both input and output simultaneously. For 
example, a serial communication protocol can be used to send data back and 
forth between multiple Propellers or between a Propeller and a personal com-
puter. In this example, a second Propeller or a computer is acting as a complex 
device interfacing with the first Propeller. Complex devices may also rely on 
other techniques, often unique to that type of device, to interface with a Propel-
ler. Computer monitors, for example, require the Propeller to use VGA (video 
graphics array) or composite video methods to display text or images.

Most microcontrollers have specialized pins for each function. Some pins 
may operate only as digital pins, others only as analog, and others still only for 
specific communication protocols. The I/O pins on the Propeller are not spe-
cialized; any pin can be used for most purposes. This makes the Propeller more 
flexible than many microcontrollers. There are, however, a few instances where 
some pins have unique functions. When the Propeller initially turns on, four 
pins have a momentary special purpose. Pins 28 and 29 use an I2C protocol 
to load a program from memory, while pins 30 and 31 use a serial protocol to 
load a program from a computer. After boot-up, these pins can be used for any 
purpose, but this should be considered an intermediate technique. Video gener-
ation also has some requirements for specific pins. Composite video, depending 
on type, requires up to four adjacent pins (e.g., 0–3, or 8–11) and VGA video 
requires one of four blocks of eight adjacent pins (0–7, 8–15, 16–23, or 24–31).

All I/O pins function at 3.3 VDC, regardless of the type of device to which 
they are connected. When used as an input, I/O pins will consider voltage below 
1.6 VDC to be off, and any voltage above 1.6 VDC to be on. I/O pins should 
never be directly connected to voltage greater than 3.3 VDC. When used as an 
output, each I/O pin can provide 3.3 VDC at 40 mA to an output device. See 
Chapter 8 for more information on making connections to some commonly 
used devices.

Multicore Architecture

The Propeller is relatively unique among microcontrollers in that it has eight 
independent, 32-bit processors called cogs. Each cog is identical and has access 
to all 32 I/O pins and several other resources. On boot-up, the Propeller will 
begin running a program in the first cog (cog 0). Then, additional programs may 
be started and stopped in other cogs as needed. During operation, a central hub 
allows each cog to operate sequentially. In a sense, the selection of which of the 
eight cogs is active "rotates" around the central hub. This rotating theme leads to 
the name of the Propeller, cogs, and the Propeller’s programing language, Spin.



Technical Specifications of the Parallax Propeller 11

The multicore architecture of the Propeller provides many interesting multi-
tasking applications. A single cog can be dedicated to a complex task, like monitor-
ing a user interface or recording data to an SD card, while another cog implements 
an experimental protocol. This multitasking approach makes some tasks that 
would be difficult for other microcontrollers both possible and easy to implement. 
This approach also greatly simplifies programing requirements for newer users. 
For example, an entire cog can be dedicated to a simple task, like blinking an LED 
(light emitting diode) at a fixed rate, while a second cog records lever-presses. 
Most microcontrollers would require a single program to conduct both tasks, but 
with eight cogs, there is often little reason to force a single cog to execute multiple 
tasks. Many other microcontrollers make use of interrupts to multitask. Inter-
rupts cause a program to temporarily jump to a different section of code, then 
return to the original location once that section is complete. Although powerful 
when used correctly, interrupts have the weakness of suspending one aspect of 
a program to implement some other task and can cause errors unless carefully 
designed. The Propeller’s multicore architecture removes the need for interrupts, 
and as such it lacks interrupts by design.

Each cog has access to several shared resources. This includes all access to all 
32 I/O pins, 32 kB of ROM (read-only memory) used to store font characters 
and mathematics tables, 32 kB of RAM (random-access memory) used to store a 
program and related variables and data, and the system counter used for precise 
timing. All cogs also have several individual resources, including two counter 
modules used for many advanced techniques involving frequency generation 
and measurement, and one video generator module.

Software Peripherals

Microcontrollers are designed to interface with a wide variety of devices, 
many which have their own special requirements like chip-to-chip communi-
cation protocols, or video generation protocols. To deal with the requirements 
of external devices, many microcontrollers also have specialized hardware to 
communicate with these devices. This often includes I/O pins used exclusively 
to connect to one kind of device, or pins designed specifically for interrupts. For 
many applications, selecting the right microcontroller to interface with a device 
is an important decision.

This concern, however, is mostly irrelevant when using the Propeller as it is 
much more adaptable than most microcontrollers. The Propeller does not have 
specialized hardware to connect to specific devices, instead it relies on software 
peripherals that can be easily changed to fit the current requirements. In many 
cases, a software peripheral can run on a dedicated cog, essentially transform-
ing that cog into an emulator of specialized hardware. For example, the Propel-
ler does not have hardware connections specialized for I2C protocol as do many 



PROPELLER EXPERIMENT CONTROLLER12

microcontrollers. Instead, an I2C program may operate in one cog to communi-
cate with an assortment of I2C devices, and then pass this information to another 
cog that implements an experimental protocol. Use of software peripherals is 
very common in applications of the Propeller. In fact, the PEC software uses two 
cogs as software peripherals, one cog is used exclusively to communicate with an 
SD card, and a second cog is used exclusively to keep track of time in the experi-
ment. The remaining six cogs can be used freely to conduct an experiment. This 
degree of flexibility, without specialized hardware, is simply not possible with 
other microcontrollers. 

Operating Procedures

The Propeller’s hardware goes through a standard operating procedure when 
used. When a Propeller receives power, it begins the boot-up procedure. The 
Propeller first looks for a connection to host computer using pins 30 and 31. If 
a host is detected, it communicates with the host and can load a program from 
the host into RAM. If no host was detected, the Propeller communicates with 
an EEPROM using pins 28 and 29. If an EEPROM is found, it loads the program 
from EEPROM to RAM. The Propeller then enters run-time procedure. Pins 28, 
29, 30, and 31 can now be freely used by any program. The Propeller will enter 
shut-down procedure if it stops receiving power, if the hardware reset pin is ac-
tivated, or if the REBOOT instruction is used in a program. The Propeller will 
enter boot-up procedure again if it receives power. Any programs running from 
EEPROM can thus be reset by toggling the Propeller’s power supply.




