
6

EXPERIMENTAL EVENT

Experimental Event has a number of public methods that can be used in an
experiment program. The public methods can be used in any program that
imports the Experimental Event object. A number of private methods are also
present, but these cannot be used by parent programs. The following sections
describe the pubic methods in Experimental Event that users may employ in
their programs. The headers for each section represent the method name, with
the method parameters in parenthesis. This is the same general format as would
appear in a program.

DeclareInput(Pin, ClockID). This method configures the Experimental Event
object to be used with a digital input device and sets the event type of the object
to an input event. The first parameter, Pin, is the I/O pin number connected to
a digital input device. Once the pin number is provided, it is saved in Experi-
mental Event’s variable space and the direction and input registers for that pin
(DIRA and INA) can be easily controlled in the background. Because the De-
clareInput method sets the direction and input registers, it must be used by the
cog that will control that input. The second parameter, ClockID, is used to save
the location of Experimental Functions’s experimental clock. The Experimental
Event object uses Experimental Functions’s clock to detect and debounce input
events, as well as to record the duration of all event types. In order to provide the
location of the experimental clock, one of Experimental Functions’s StartExper-
iment methods must be called before the DeclareInput method. Experimental
Functions's ClockID method can then be used as the ClockID parameter in the
event declaration. A maximum of 151 events of any type can be declared. Figure
6.1 shows an example of declaring an input event. Once an Experimental Event
object is declared as an input event, the Detect, DetectInverted, SetDebounce,

53

PROPELLER EXPERIMENT CONTROLLER54

State, ID, Count, SetCount, Duration, and SetDuration methods can be used to
record and control the input event. Note this program also sets the system Pro-
peller’s clock speed in the constant section and includes easy to read constant
representatives of event states. These instructions in the constant block will be
common to most programs.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin = 5
OBJ
	 EXP:	 "Experimental_Functions"		
	 Lever: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
Figure 6.1: Input declaration example program.

CON
	 _clkmode = xtal1 + pll16x	
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin	= 5
OBJ
	 EXP: 	 "Experimental_Functions"		
	 Lever: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 REPEAT
		 Lever.Detect
Figure 6.2: Detect example program.

Experimental Event 55

Detect. This method detects and returns the state of an input event. The state
can be read at any time using the State method (described later in this chapter).
The Detect method also runs a private debounce method. The debounce feature
ensures that a digital input device is active for a minimum amount of time (default
25 ms) before recording the input as on. Similarly, the device must be deactivated
for the same amount of time before recording the input as off. This also means
that the event’s minimum duration and minimum inter-event interval are equal
to the debounce duration. Typically, the Detect method will be used in a repeat
loop to continually detect the input state on each program cycle. Figure 6.2 shows
a typical use of the Detect method. Note, however, that nothing is done with the
state returned from the Detect method. In many experiments, the Detect method
will be nested within an Experimental Functions's Record method to automati-
cally save any changes in event state during each detection (see Chapter 7).

DetectInverted. The DetectInverted method is identical to the Detect method
except that it works with inverted inputs. Use this when an input circuit has an
inverted signal where current flows when the input is off, and no current flows
when the input is on. For example, Sharp Corporation’s (Tokyo, Japan) digital
infrared proximity sensors deliver current to an I/O pin when an object is not
detected and stop delivering current when an object is detected. Figure 6.3 shows
an example of using the DetectInverted method.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin	= 5
	 IRPin	 = 12
OBJ
	 EXP:	 "Experimental_Functions"	
	 Lever: 	 "Experimental_Event"
	 IR: 		 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)	
	 IR.DeclareInput(IRPin, EXP.ClockID)
	 REPEAT
		 Lever.Detect
		 IR.DetectInverted

Figure 6.3: DetectInverted example program.

PROPELLER EXPERIMENT CONTROLLER56

SetDebounce(Time). This method allows the user to modify the debounce du-
ration used by the Detect and DetectInverted methods. The default debounce
duration is 25 ms, and the maximum duration is 60,000 ms. In a sense, the
debounce duration is the smallest temporal unit of data that can be detected.
Therefore, the greater the debounce duration, the less accurate the data. The
event duration and the inter-event interval cannot be smaller than the debounce
duration. For most applications, the default debounce duration will suffice.
Smaller durations may be used to increase precision, and larger durations may
occasionally be required for electrically noisy input circuits. Figure 6.4 shows an
example of adjusting the debounce duration for one input event.

DeclareOutput(Pin,  ClockID). This method configures the Experimental
Event object to be used with a digital output device and sets the event type of
the object to an output event. Use of DeclareOutput is very similar to use of
DeclareInput. The first parameter, Pin, is the I/O pin number connected to a
digital output device. Because the DeclareOutput method sets the direction
and input registers, it must be used by the cog that will control that output.
The second parameter, ClockID, is used to save the location of Experimental
Functions’s experimental clock. As with DeclareInput, one of Experimental
Functions’s StartExperiment methods must be called before the DeclareOutput

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin	= 5
	 IRPin	 = 12
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 IR: 		 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 IR.DeclareInput(IRPin, EXP.ClockID)
	 IR.SetDebounce(100)
	 REPEAT
		 Lever.Detect
		 IR.DetectInverted
Figure 6.4: SetDebounce example program.

Experimental Event 57

method, and then Experimental Functions's ClockID method can then be used
as the ClockID parameter in the event declaration. Once an Experimental Event
object is declared as an output event, the TurnOn, TurnOff, State, ID, Count,
SetCount, Duration, and SetDuration methods can be used to record and con-
trol the output event. A maximum of 151 events of any type can be declared.
Figure 6.5 shows an example of using the DeclareOutput method.

TurnOn. This method turns on an output, but it does nothing if the output is
already on. It also returns the event state. TurnOn can be used within an Experi-
mental Functions's Record method to save data (see Chapter 7). Figure 6.6 shows
an example where the TurnOn method is used to turn on a light output event,
but only if a lever input event’s state becomes an onset. Note that the event states
are defined in the constant section.

TurnOff. This method turns off an output, but it does nothing if the output is
already off. It also returns the event state. TurnOff can be used within an Exper-
imental Functions's Record method to save data. Figure 6.7 shows an example
where the TurnOff method is used to turn off a shock output event, but only if a
lever input event’s state becomes an onset.

DeclareManualEvent(ClockID). This method configures the Experimental
Event object to be used as a manual event. As manual events are not necessarily
related to a specific input or output device, no I/O pin parameter is needed.
However, the ClockID parameter is still used to save the location of Exper-
imental Functions’s experimental clock. As with DeclareInput and Declare-
Output, one of Experimental Functions’s StartExperiment methods must be

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin = 5
	 LightPin = 7
OBJ
	 EXP:	 "Experimental_Functions"		
	 Lever: 	 "Experimental_Event"
	 Light: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Light.DeclareOutput(LightPin, EXP.ClockID)
Figure 6.5: DeclareOutput example program.

PROPELLER EXPERIMENT CONTROLLER58

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin	 = 5
	 ShockPin	= 7
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Shock: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Shock.DeclareOutput(ShockPin, EXP.ClockID)	
	 REPEAT
		 IF Lever.Detect == Onset
			 Shock.TurnOff
Figure 6.7: TurnOff example program.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq	= 5_000_000
	 Off	 = 0
	 Onset 	 = 1
	 On 	 = 2
	 Offset 	 = 3
	 LeverPin 	 = 5
	 LightPin 	 = 7
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Light: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Light.DeclareOutput(LightPin, EXP.ClockID)
	 REPEAT	
		 IF Lever.Detect == Onset
			 Light.TurnOn

Figure 6.6: TurnOn example program.

Experimental Event 59

called before the DeclareManualEvent method. The Experimental Functions's
ClockID method can then be used as the ClockID parameter. Once an Experimen-
tal Event object is declared as a manual event, the StartManualEvent, StopManua-
lEvent, State, ID, Count, SetCount, Duration, and SetDuration methods can be
used to record and control the manual event. A maximum of 151 events of any
type can be declared. Figure 6.8 shows an example of using manual events in
a program. In this program, the outer repeat loop turns on shock, then starts
the latency manual event. Next, the program starts another repeat loop. This
loop repeatedly checks the state of the lever input event and does not stop until
an onset is detected; it effectively suspends the program until a lever onset is de-
tected. Once a lever onset is detected, the inner repeat loop ends. Next, shock is
turned off, and the latency manual event is stopped. The duration of the latency
event thus corresponds to latency to press the lever after shock was delivered.
Finally, the program pauses for 30 seconds before starting at the beginning of

CON
	 _clkmode = xtal1 + pll16x	
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin	 = 5
	 ShockPin	= 7
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Shock:	 "Experimental_Event"
	 Latency:	"Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Shock.DeclareOutput(ShockPin, EXP.ClockID
	 Latency.DeclareManualEvent(EXP.ClockID)		
	 REPEAT 20
		 Shock.TurnOn
		 Latency.StartManualEvent				
		 REPEAT UNTIL LEVER.DETECT == Onset
		 Shock.TurnOff
		 Latency.StopManualEvent				
		 WAITCNT(CLKFREQ * 30 + CNT)
Figure 6.8: ManualEvent example program.

PROPELLER EXPERIMENT CONTROLLER60

the outer repeat loop. The entire process repeats 20 times. The overall result is a
program that delivers 20 shocks and saves the latency to press a lever after each
shock. Each lever-press also causes a 30-second break between shocks.

StartManualEvent. This method starts recording a manual event, but it
does nothing if the manual event is already being recorded. It also returns the
event state. StartManualEvent can be used within an Experimental Functions's
Record method to save data. Use of the StartManualEvent method is very sim-
ilar to that of TurnOn, however, manual events are not associated with an I/O
pin, and no I/O pins are turned on as with the TurnOn method.

StopManualEvent. This method stops recording a manual event, but it does
nothing if the manual event is not being recorded. It also returns the event state.
StopManualEvent can be used within an Experimental Functions's Record
method to save data. Use of the StopManualEvent method is very similar to that
of TurnOff, however, manual events are not associated with an I/O pin, and no
I/O pins are turned off as with the TurnOff method.

DeclareRawData(ClockID). This method configures the Experimental Event
object to be used as a raw data event. As raw data events are not related to an

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin = 5
	 LightPin 	= 7
OBJ
	 EXP:	 "Experimental_Functions"	
	 Lever: 	 "Experimental_Event"
	 Light: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Light.DeclareOutput(LightPin, EXP.ClockID)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset OR Lever.State == On
			 Light.TurnOn
		 ELSE
			 Light.TurnOff

Figure 6.9: State example program.

Experimental Event 61

input or output device, no I/O pin parameter is needed. However, the ClockID
parameter is still used to save the location of Experimental Functions’s experi-
mental clock. As with all declaration methods, one of Experimental Functions’s
StartExperiment methods must be used first in order for Experimental Func-
tions ClockID method to be used as the ClockID parameter. The purpose of the
raw data event is to ensure that Experimental Functions can save any integer
data provided by the user, thus raw data events are not designed to be used with
other methods in Experimental Events. A maximum of 151 events of any type
can be declared.

State. This method returns the event state. For inputs, it can be used after
a Detect or DetectInverted method has been called. For outputs and manual
events, the State method can be used at any time. In the example in Figure 6.9,
the detect method is first used to update the state of a lever. Then, the State
method is used to evaluate the state of the lever. If the lever’s state is onset or
on, a light is turned on. Otherwise, if the lever’s state is offset or off, the light is
turned off. Although the Detect method does return the event state, using the

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin	 = 5
	 LightPin 	 = 7
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Light: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Light.DeclareOutput(LightPin, EXP.ClockID)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset OR Lever.State == On
			 IF Lever.Count => 10
				 Light.TurnOn
		 ELSE
			 Light.TurnOff

Figure 6.10: Count example program.

PROPELLER EXPERIMENT CONTROLLER62

State method here is more efficient than running the Detect method twice to
compare the lever’s state to both the onset and on constants.

ID. This method returns an event’s ID code. Each event has a unique ID code
assigned by the declare methods. The ID code is used by Experimental Func-
tions to save data. It is not used at any other time. The ID method will be dis-
cussed further in Chapter 7.

Count. The count method returns the event count, or number of times an
event has occurred in an experiment. The event count can be used in contin-
gencies. Figure 6.10 shows an example of using the Count method. In the main
repeat loop, a light is turned on only if the lever’s state is onset or on, and if the
lever’s count is at least 10.

SetCount(NewCount). The SetCount method changes the event count to the
parameter, NewCount. This can be used for a variety of purposes. For example,
setting the count of a lever-press event to 0 after each reinforcer in a fixed-ratio
schedule of reinforcement program allows the Count method to easily keep track

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq	= 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin	 = 5
	 LightPin	 = 7
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Light: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Light.DeclareOutput(LightPin, EXP.ClockID)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset OR Lever.State == On
			 IF Lever.Count == 10
				 Light.TurnOn
				 Lever.SetCount(0)
		 ELSE
			 Light.TurnOff
Figure 6.11: SetCount example program.

Experimental Event 63

of the number of lever-presses required to produce a reinforcer. Figure 6.11 shows
an example of the SetCount method. This program is identical to that in Figure
6.10, except that the count is set to 0 each time the light is turned on. The light
therefore can only be turned on every ten lever-presses.

Duration. The Duration method returns the total time, in milliseconds, that
an event has occurred during an experiment. The duration includes any ongo-
ing events, such as a button that is currently being pressed. The total duration
can be used in contingencies. Individual event duration can be created and used
in contingencies by setting the duration to 0 after each instance (see the SetDu-
ration method below). Figure 6.12 shows an example of the Duration method.
Here, the light can only be turned on once the lever has been pressed for a total
of 2,000 ms. This duration can be accumulated across multiple lever-presses.

SetDuration(NewDuration). The SetDuration method changes the event dura-
tion to the parameter, NewDuration. This can be used for a variety of purposes.
For example, setting the duration of a lever-press event to 0 when the input state
becomes an offset will allow the Duration method to return individual lever-press

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq	= 5_000_000
	 Off	 = 0
	 Onset 	 = 1
	 On 	 = 2
	 Offset 	 = 3
	 LeverPin	 = 5
	 LightPin	 = 7
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Light: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Light.DeclareOutput(LightPin, EXP.ClockID)
	 REPEAT	
		 Lever.Detect
		 IF Lever.State == Onset OR Lever.State == On
			 IF Lever.Duration => 2000
				 Light.TurnOn
		 ELSE
			 Light.TurnOff
Figure 6.12: Duration example program.

PROPELLER EXPERIMENT CONTROLLER64

duration. Figure 6.13 shows an example of the SetDuration method. This program
is identical to that in Figure 6.12, except that the duration is set to 0 any time the
lever is in the offset or off state. The light therefore can only be turned after the
lever is held for 2,000 consecutive milliseconds.

CON
	 _clkmode	= xtal1 + pll16x
	 _xinfreq	= 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 LeverPin	 = 5
	 LightPin 	 = 7
OBJ
	 EXP:	 "Experimental_Functions"	
	 Lever: 	 "Experimental_Event"
	 Light: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Light.DeclareOutput(LightPin, EXP.ClockID)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset OR Lever.State => ON
			 IF Lever.Duration => 2000
				 Light.TurnOn
		 ELSE
			 Lever.SetDuration(0)
			 Light.TurnOff
Figure 6.13: SetDuration example program.

