
7

EXPERIMENTAL FUNCTIONS

The Propeller Experiment Controller’s (PEC) Experimental Functions object
provides a variety of public methods to fill the diverse needs of behavioral ex-
periments. To accomplish this, many of the methods in Experimental Functions
have multiple variations, such as the several variations of the StartExperiment
method. Other methods are related and codependent. For example, the SetFre-
quency method can generate audio frequencies on I/O pins, but it first requires
a StartFrequencyGenerator method to be used. Because of the relationships
between the methods in Experimental Functions, the methods are grouped
together into method families. In the following sections, we will discuss each
method family, as well as individual public methods of Experimental Func-
tions. Private methods cannot be used in other programs and thus will not be
discussed. The headers for each method represent the method name, with the
method parameters in parenthesis.

StartExperiment Methods

Several StartExperiment methods can be used to prepare the Propeller for
an experiment. These methods have three primary goals: (1) to start the experi-
ment clock, (2) to generate a random number to use as a seed for future pseudo-
random number generation, and (3) to connect to the SD to prepare for record-
ing data using a modified version of the FRSW object (Rokicki and Dummer,
2009). The StartExperiment methods use two cogs. Starting the experiment
clock requires one cog. The clock then runs in the background, and can be used
for many purposes, such as executing code at specific times and recording tem-
poral variables. The Experimental Event object also requires the experimental

65

PROPELLER EXPERIMENT CONTROLLER66

clock for its methods. Preparing the random seed for random number genera-
tion temporarily uses a cog. However, after a random number is generated, the
cog is then closed and freed for other purposes. Connecting to the SD card also
requires a cog. When the StartExperiment method connects to the SD card, it
creates a memory file, with a default name of "memory.txt" in the root directory
of the SD card. The memory file is used to quickly record very basic information
about the experiment while the experiment is in progress. After an experiment
ends, the memory file can be used to create a detailed data spreadsheet, with a
default name of "data.csv".

StartExperiment(DO, CLK, DI, CS). This is the standard StartExperiment
method. It prepares a memory file on the SD card named "memory.txt", gener-
ates a random number, and then launches the experiment clock. The parame-
ters DO, CLK, DI, and CS refer to the Data Out, Clock, Data In, and Chip Select
pins of the SD card. The user must provide the pin numbers of the Propeller’s
I/O pins connected to the DO, CLK, DI, and CS pins on the SD card. It is
important to note that these pins should be used exclusively for the SD card.
The StartExperiment method returns to 0 if the SD card is properly mounted;
this is generally only used to troubleshoot hardware connections. This method
requires two cogs, one to interface with the SD card, while a second cog is used
for the experiment clock. Figure 7.1 shows an example of using the StartExper-
iment method. The SD card connections are defined in the constant section.
In this example, the connections match those of the Propeller Platform DNA.
Other development boards custom setups may use different pins on the Propel-
ler to connect to the SD card.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Ons	et 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 DO 	 = 0
	 CLK	 = 1
	 DI		 = 2
	 CS		 = 3
OBJ
	 EXP:	 "Experimental_Functions"
PUB Main
	 EXP.StartExperiment(DO, CLK, DI, CS)
Figure 7.1: StartExperiment example program.

Experimental Functions 67

StartExperimentCustomMemory(DO, CLK, DI, CS, MemoryFile). This method
functions identically to the StartExperiment method, except that the user can
provide a custom memory file name. Specifying a custom memory file name can
be used for many purposes, including running several sessions in a series. For
example, session one might use the name "M1.txt", while session two might use
the name "M2.txt". By default, the Propeller searches for the default memory file
name to create a data spreadsheet, so this method must be used in conjunction
with the appropriate SaveData method (see the SaveData methods section). The
parameter MemoryFile, must be the address of a null-terminated string. Note
that long file names are not supported. File names can be a maximum of eight
characters, plus a three-letter extension. For example, "abc.txt" or "abcdefgh.txt"
are valid names, while "abcdefghij.txt" is not a valid name. Figure 7.2 shows an
example of using StartExperimentCustomMemory.

StartExperiment_NoData. This method is used to launch the experiment
clock (requires one cog) and generate a random number without connect-
ing to an SD card. The StartExperiment_NoData method is often used when
automation is needed, but data records are not required. This method is also
useful during initial testing and developing of a program before data record-
ing is added. For advanced users that want to manually code their own cus-
tomized data output format, this method can be used to launch the experi-
ment clock and generate a random number without preparing a file on the
SD card for the PEC’s standard data format. The examples in Chapter 6 all

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 DO 	 = 0
	 CLK	 = 1
	 DI		 = 2
	 CS		 = 3
OBJ
	 EXP:	 "Experimental_Functions"
PUB Main
	 EXP.StartExperiment(DO, CLK, DI, CS, @FileName)
DAT
	 FileName	 BYTE	 "M1.txt"
Figure 7.2: StartExperimentCustomMemory example.

PROPELLER EXPERIMENT CONTROLLER68

use the StartExperiment_NoData method to illustrate the principles of the
Experimental Event object.

Shutdown. The Shutdown method unmounts the SD card and stops the ex-
periment clock. This method is typically used at the end of the program after
all data have been saved. This will be discussed in more detail along with the
SaveData methods.

Time Methods

StartClock. This method manually starts the experiment clock on a new cog.
The clock value increments every millisecond and can run for 24 days before
needing to be reset. The system clock also records the number of days that have
passed, and the number of milliseconds that have passed in each day. Typically,
the StartExperiment methods use the StartClock method to launch the experi-
ment clock. However, the clock can also be launched manually. This should be
considered an advanced technique and should not be used in conjunction with
the StartExperiment methods. Most users will not use the StartClock method.
It is available only to provide more freedom for skilled programmers. We have
not used this method in practice; all our applications use one of the StartExper-
iment methods.

StopClock. This method manually stops the experiment clock cog. Typically,
the experiment clock is stopped using the StopExperiment methods. However,
advanced users can also manually stop the clock. Like the StartClock method,
this method is primarily provided to be comprehensive.

ClockID. This method returns the memory address of the experiment clock.
The sole purpose of this method is to provide the address of the experiment
clock to the Experimental Event object. The Experimental Event object can then
use the system clock value found at the address to debounce inputs and record
event duration. Chapter 6 shows several examples of using the ClockID method
in Experimental Event objects declaration statements.

SetClock(NewValue). The SetClock method changes the experiment clock
value to the millisecond parameter, NewValue. This method can be used in the
rare scenario where the clock may run for over 24 days. It can also be used to
deliberately set the experiment clock to a specified value, such as one represent-
ing the current time of day. The example in Figure 7.3 uses the SetClock method
to change the experiment clock value to 28,800,000 milliseconds, or 8 hours. If
the Propeller is programmed at 8:00 AM, the experiment clock will match the
current time of day.

Time(Event). The Time method is a powerful technique used to execute code
at specific times and record temporal variables. It is heavily inspired by the
Walter and Palya experiment controller’s TIME function (Palya and Walter,
1993; Walter and Palya, 1984). The PEC’s Time method returns the time, in

Experimental Functions 69

milliseconds, since the millisecond parameter, Event. Time(Event), can there-
fore be read as time since event. The Time method literally subtracts the value of
Event from the current clock value. If the statement Time(0) is used, it returns
the current value of the experiment clock (clock −0), and can thus be thought of
as the time now.

Figure 7.4 shows a program that uses the Time method to turn on a feeder
for 5 seconds every time a lever is pressed. The program uses a similar constant
block as previous examples, except now a constant, FeederDuration, is included
to represent the 5-second (5,000 ms) duration that the feeder will be activated
after each lever-press. A VAR block is also included with one long-sized vari-
able, FeederStart. This variable will be used to note the time that the feeder is
activated. Since FeederStart will be used to record a time value, it should be
long-sized to match the long-sized value of the experiment clock. During the
main repeat loop of the program, if a lever onset is detected, the feeder is turned
on and the current time (EXP.Time(0)) is saved as FeederStart. The program
now knows exactly when the feeder was turned on. A second conditional in the
repeat loop evaluates how much time has passed since FeederStart (EXP.Time
(FeederStart)). If the amount of time that has passed since FeederStart is greater
than FeederDuration, the feeder will be turned off. Thus, the feeder will activate
for 5 seconds, every time the lever is pressed.

Figure 7.5 modifies the previous example further, resulting in a program that
runs for 5 minutes. A new constant, SessionDuration, is added to represent the
desired session duration. All time values are provided in milliseconds, so the
5-minute session duration is written as 300,000 ms. A new variable, Start, is also

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On 		 = 2
	 Offset 	 = 3
	 DO 	 = 0
	 CLK	 = 1
	 DI		 = 2
	 CS		 = 3
OBJ
	 EXP:	 "Experimental_Functions"
PUB Main
	 EXP.StartExperiment(DO, CLK, DI, CS)		
	 EXP.SetClock(28_800_000)
Figure 7.3: SetClock example program.

PROPELLER EXPERIMENT CONTROLLER70

added to record the start time of the experiment. Immediately before the main
repeat loop begins, Start is set to the current time. This ensures that the program
can always refer to an accurate start time. The experiment clock may not be an
accurate representation of the time an experiment starts, because several lines
of code occur between the StartExperiment method that starts the experiment
clock, and the repeat loop, where the experiment actually begins. The repeat loop
itself has also been modified to terminate when the time since Start is greater
than SessionDuration. This will cause the repeat loop to end after 5 minutes.
After the repeat loop ends, the light is turned off, if it was on at the end of the loop.

Day. This method returns the current day, starting with day 1. The exper-
iment clock automatically increments the day value every 86,400,000 milli-
seconds. The Day method can be used in experiments or automation projects
where the Propeller runs for multiple days at a time.

CON
	 _clkmode = xtal1 + pll16x	
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On		 = 2
	 Offset 	 = 3
	 LeverPin	 = 5
	 FeederPin	= 7
	 FeederDuration = 5_000
VAR
	 LONG	 FeederStart
OBJ
	 EXP:	 "Experimental_Functions"	
	 Lever: 	 "Experimental_Event"
	 Feeder: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset
			 Feeder.TurnOn
			 FeederStart := EXP.Time(0)
		 IF EXP.Time(FeederStart) > FeederDuration
			 Feeder.TurnOff
Figure 7.4: Time example program 1.

Experimental Functions 71

DayTime. This method returns the time during the day, in milliseconds. The
value is reset automatically each day. During the first day, this instruction is
equivalent to Time(0). The DayTime method can be used to easily report the
current time of day in experiments or automation projects where the Propeller
runs for multiple days at a time. For precise control of timing, the Time method
is superior.

TimeToMilliseconds(TimeStringAddress). The TimeToMilliseconds method
converts a specifically formatted string to an integer, in milliseconds. It is
one of several methods that converts between millisecond-time and a string.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off		 = 0
	 Onset 	 = 1
	 On		 = 2
	 Offset 	 = 3
	 LeverPin	 = 5
	 FeederPin	= 7
	 FeederDuration = 5_000
	 SessionDuration = 300_000
VAR
	 LONG	 FeederStart
	 LONG	 Start
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Feeder:	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 Start := EXP.Time(Start)
	 REPEAT UNTIL EXP.Time(Start) > SessionDuration
		 Lever.Detect
		 IF Lever.State == Onset
			 Feeder.TurnOn
			 FeederStart := EXP.Time(0)
		 IF EXP.Time(FeederStart) > FeederDuration
			 Feeder.TurnOff
	 Feeder.TurnOff
Figure 7.5: Time example program 2.

PROPELLER EXPERIMENT CONTROLLER72

The parameter TimeStringAddress should be the address of the string. The string
should exactly follow the format "HH:MM:SS" for a 24-hour clock or "HH:MM:SS
_M" for a 12-hour clock. Providing the string "02:00:00 PM" or "14:00:00", for ex-
ample, would return 49,600,000 ms. This method, along with other time conver-
sion methods, can be used to easily read and set the experiment clock with respect
to the time of day.

MillisecondsTo12HourTime(Milliseconds). This method transforms a value, in
milliseconds, to a string time value in the format "HH:MM:SS _M" for a 12-
hour clock (AM/PM clock). It returns the address of a string stored in Experi-
mental Functions. For example, providing the integer 49,600,000 would return
the string "02:00:00 PM". This method, along with other time conversion meth-
ods, can be used to easily read and set the experiment clock with respect to the
time of day.

MillisecondsTo24HourTime(Milliseconds). This method transforms a value, in
milliseconds, to a string time value in the format "HH:MM:SS" for a standard
24-hour clock (military time). It returns the address of a string stored in Exper-
imental Functions. For example, providing the integer 49,600,000 would return
the string "12:00:00". This method, along with other time conversion methods,
can be used to easily read and set the experiment clock with respect to the time
of day.

Pause(Duration). The Pause method pauses the cog that calls the method for
the provided duration, in milliseconds. No code will run during this pause.
However, other cogs are free to continue operation. The Pause method is fairly
accurate; however, some inaccuracy may accumulate after repeated pauses.
For example, a 1-millisecond error may occur after five consecutive 5-minute
pauses. A single 25-minute pause is less likely to create this error. If a repeated
pause is needed in a loop, SyncPause may be more accurate. SyncPause will con-
sider the time it takes to run the code in a loop, Pause will not.

Figure 7.6 shows an example of using the Pause method in a separate cog.
This program is similar to that in Figure 7.4, but it also uses a separate cog to run
the ShockPulser method, which delivers a 30-second shock every 30 seconds.
The ShockPulser method is launched by the Main method. Inside the Shock-
Pulser method, the new cog first uses the DeclareOutput method to declare the
Shock event as an output event on the pin, ShockPin. This enables the cog to
control the ShockPin. If the first cog used the DeclareOutput method to declare
the Shock event as an output event, the second cog would not be able to control
the ShockPin. While the session is in progress, the ShockPulser method turns
on shock, pauses for 30 seconds, turns off shock, then pauses for 30 seconds
again. The cog running the ShockPulser method cannot do anything during
the pause. However, since the ShockPulser method runs in a separate cog, the
Main method can operate without pausing. To reduce figure size, constants are
provided in list form.

Experimental Functions 73

SyncPause(Duration). The SyncPause method functions similarly to the Pause
method, except that it is optimized to create a highly precise, synchronized pause
in a repeat loop. SyncPause is more accurate in a repeat loop because it compen-
sates for the duration required to execute the preceding code in the repeat loop.
This removes any small cumulative error that may occur after multiple pauses.

CON
	 _clkmode = xtal1 + pll16x	
	 _xinfreq = 5_000_000
	 #0, Off, 	 #1, Onset, 	 #2, On, 	#3, Offset
	 #0, DO, 	 #1, CLK, 	 #2, DI, 	 #3, CS
	 #5, LeverPin,	 #7, FeederPin, 	 #12, ShockPin
	 #5_000, FeederDuration, 	 #30_000, ShockDuration
VAR
	 LONG	 FeederStart
	 LONG	 ShockCogStack[100]
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Feeder:	 "Experimental_Event"
	 Shock: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)		
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 CogNew(ShockPulser, @ShockCogStack)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset
			 Feeder.TurnOn
			 FeederStart := EXP.Time(0)
		 IF EXP.Time(FeederStart) > FeederDuration
			 Feeder.TurnOff
PUB ShockPulser
	 Shock.DeclareOutput(ShockPin, EXP.ClockID)
	 REPEAT
		 Shock.TurnOn
		 EXP.Pause(ShockDuration)
		 Shock.TurnOff
		 EXP.Pause(ShockDuration)
Figure 7.6: Pause example program.

PROPELLER EXPERIMENT CONTROLLER74

To use a synchronized pause, use the StartSync method immediately before a
repeat loop. Then, the SyncPause method can be used at the end of the repeat
loop. Note that the value created by the StartSync method is shared among
cogs. This means that a SyncPause can only be used in one cog at a time. Errors
may occur if multiple cogs use the SyncPause method simultaneously. The Pro-
peller Manual (Martin, 2011) provides details on creating synchronized pauses
with the WAITCNT instruction. Consider the example in Figure 7.7. This ex-
ample is a revision of the ShockPulser method from Figure 7.6. In this exam-
ple, a sync point is created using the StartSync method immediately before the
repeat loop begins. Inside the repeat loop, shock is turned on, the cog pauses
for 20 seconds, then shock is turned off. Next, the cog executes a synchronized
pause of 30 seconds. This synchronized pause includes the time taken to turn
shock on, pause for 20 seconds, and turn shock off again. The synchronized
pause is therefore around 10 seconds and brings the entire repeat loop to a per-
fect 30 seconds. Without the synchronized pause, small timing errors may ac-
cumulate across the experiment, likely only in the range of a few milliseconds.

StartSync. This method marks a point to use for synchronized pauses. Only
one sync point can be created, so caution should be used when attempting syn-
chronized pauses in multiple cogs.

Sleep(Duration). This advanced method functions similarly to the Pause
method but is designed to put the Propeller in a power-saving mode to conserve
battery life. It should only be necessary when the Propeller is powered by bat-
tery. The Sleep method puts the cog that uses it, in addition to the experiment
clock cog, in a power-saving sleep mode. The Sleep method uses a less accurate
pause than the Pause method. Sacrificing temporal accuracy conserves more
power. Both the duration of the sleep and the value of the experiment clock after
the Sleep method is used may be slightly inaccurate. In practice, this inaccuracy
may result only in a few seconds of error after sleeping for several hours. To
save the maximum amount of power, any other active cogs also need to be shut
down. Any other cogs that were activated, such as those used to run peripher-
al devices, will still be active and consuming power. As Experimental Func-

PUB ShockPulser
	 Shock.DeclareOutput(ShockPin, EXP.ClockID)	
	 Exp.StartSync
	 REPEAT
		 Shock.TurnOn
		 EXP.Pause(20_000)
		 Shock.TurnOff
		 EXP.SyncPause(30_000)
Figure 7.7: SyncPause example program.

Experimental Functions 75

tions also uses an additional cog to communicate with an SD card, the SD card
cog will need to be manually deactivated during the sleep and reactivated after
the sleep using Experimental Functions's SD card methods. Additional power
can be saved by changing the Propeller’s clock mode before sleeping using the
CLKSET instruction (see the Propeller Manual; Martin, 2011). A decrease in
clock frequency will save power, but it will further reduce accuracy of the system
clock. The Sleep method, manually deactivating and reactivating the SD card
cog, and adjusting the Propeller’s clock mode are all advanced techniques that
should only be considered when conserving power is a major priority.

PulseOutput(Pin, Duration). The PulseOutput method toggles the state of an
output I/O pin for the provided duration. If the I/O pin is off, the PulseOutput
method turns it on for the duration; if the I/O pin is on, the PulseOutput method
turns it off for the duration. Like the Pause method, the PulseOutput suspends
all activity on that cog until it is complete and is subject to only minor cumula-
tive errors. The PulseOutput method is convenient for repeatedly toggling the
state of an I/O pin, but it does not provide the data benefit as does manually
toggling an Experimental Event output event. PulseOutput is better used when
data are not required about a specific output. Figure 7.8 shows a revision of the
ShockPulser method from Figure 7.6 that uses the PulseOutput method. Inside
the repeat loop, the ShockPin is toggled for 30 seconds. Although this method
cannot be used to provide data about shock and is not as precise as a method
using a synchronized pause, the simplicity can be appealing.

Random Number Generation Methods

The PEC is capable of generating random numbers by combining tradi-
tional pseudorandom number generation with a random seed. The random
seed acts as the source from which all pseudorandom number generation is
derived. When the StartExperiment method is used, Parallax's RealRandom
object (Gracey, 2007) is launched in a new cog to generate a random seed.
After the random seed is generated, the RealRandom cog is closed, freeing
that cog for other uses. The random seed can then be used to generate other
random numbers. At any time, a new random seed can be generated, tempo-
rarily costing one cog.

GenerateRandomSeed. This method is used by StartExperiment to generate a
random seed. The random seed can then be used by other methods to produce

PUB ShockPulser	
	 REPEAT	
		 EXP.PulseOutput(ShockPin, 30_000)
		 EXP.Pause(30_000)	
Figure 7.8: PulseOutput example program.

PROPELLER EXPERIMENT CONTROLLER76

random numbers. It can be used to generate a new random seed at any time.
However, it is unlikely a new random seed will be required.

Random. This method randomly generates 0 or 1. It can be used to randomly
determine if an event occurs, such as randomly determining if a stimulus light be-
comes blue or red. This method returns a 1 approximately 50 percent of the time.
During three tests, the chance that the random method returned a 1 during
1,000,000 uses of the random method was 50.0530, 50.0364, and 50.0233 per-
cent. The example in Figure 7.9 shows the Main method of program that will
randomly deliver food or shock after each lever-press. In the main repeat loop,
if the lever’s state is an onset, the EXP.Random method randomly generates a 0
or 1. If the number is 0, the feeder is turned on. Otherwise, the number must be
1, and shock is turned on. Note that the CON, VAR, and OBJ blocks are omitted
to reduce figure size.

PseudoRandom(Limit). This method randomly generates a 0 or 1 but will not
generate a lengthy sequence of 0’s or 1’s. The parameter, Limit, allows the user
to define the maximum number of consecutive 0’s or 1’s that will be allowed. If
a consecutive sequence meets the user-specified limit, the next number will be
selected deliberately to break that sequence. This can be used to create pseudo-
random sequences of conditions, when some randomization is desired, but the
effects of several consecutive conditions is a concern. For example, if the program
in Figure 7.9 uses the instruction EXP.Random(5) instead of EXP.Random, the

PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 Shock.DeclareOutput(ShockPin, EXP.ClockID)
	 REPEAT	
		 Lever.Detect
		 IF Lever.State == Onset
			 IF EXP.Random == 0
				 Feeder.TurnOn
				 FeederStart := EXP.Time(0)
			 ELSE
				 Shock.TurnOn
				 ShockStart := EXP.Time(0)	
		 IF EXP.Time(FeederStart) > FeederDuration
			 Feeder.TurnOff			
		 IF EXP.Time(ShockStart) > ShockDuration
			 Shock.TurnOff
Figure 7.9: Random example program.

Experimental Functions 77

program would never provide more than five consecutive food or shock deliver-
ies. As the PseudoRandom method needs to store the random sequence to eval-
uate it, using the PseudoRandom method to simultaneously determine multiple
events (i.e., randomly determining the state of a light and the state of shock) may
lead to errors.

RandomRange(Minimum, Maximum). This method generates a random long-
sized integer within a provided range. The range is limited to 2,000,000,000. Neg-
ative numbers are allowed. The maximum range can be expressed in a number
of ways, such as (0, 2000000000), (−1000000000, 999999999), or (−2000000000, 0).
The range is limited by the maximum value of a long, 2,147,483,647, but is rounded
down to 2,000,000,000 to make the method easier to implement and use. The
average repeated samplings of a range are generally close to the average of the

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 #0, Off, 	 #1, Onset,	 #2, On,	 #3, Offset
	 #0, DO, 	 #1, CLK,	 #2, DI, 	 #3, CS
	 #5, LeverPin	 #7, FeederPin,	 #5_000, FeederDuration
VAR
	 LONG	 FeederStart
	 BYTE	 VR
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Feeder:	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 VR := EXP.RandomRange(1, 7)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset
			 IF Lever.Count => VR
				 Feeder.TurnOn
				 FeederStart := EXP.Time(0)
				 VR := EXP.RandomRange(1, 7)
				 Lever.SetCount(0)
		 IF EXP.Time(FeederStart) > FeederDuration		
			 Feeder.TurnOff
Figure 7.10: RandomRange example program.

PROPELLER EXPERIMENT CONTROLLER78

minimum and maximum numbers. During three tests of 1,000,000 uses of Ran-
domRange(0, 100), the average results of each test were 50.028462, 49.982889,
and 49.947029. Figure 7.10 shows a variable-ratio (VR) schedule of reinforce-
ment program, where food is delivered approximately every four lever-presses.
Before the repeat loop begins, the first value of VR is determined. Then, in the
main repeat loop, if the lever’s state is an onset and the count matches or exceeds
VR, food is delivered. A new VR is also determined and the lever’s count is reset.
To reduce figure size, constants are provided in list form.

PseudoRandomRange(Minimum, Maximum, Limit). This method generates a
random number within a provided range (with a maximum range of 2,000,000,000)
but will not randomly generate a lengthy sequence of the same number. If a se-
quence of random numbers meets the user-specified limit, the next number will be
selected deliberately to break that sequence. This can be used to create pseudoran-
dom sequences of conditions. Note that because it uses global variables, multiple
simultaneous uses of PseudoRandomRange will interfere with each other. As with
the PseudoRandom method, using this method to simultaneously determine mul-
tiple events may lead to errors.

Probability(Chance). The Probability method is used to determine the chance
that an event occurs, from 0 to 100 percent. This method expects the Chance
parameter to be an integer value ranging from 0 to 100. The value returned by the
Probability method is more likely to be a 0 as the Chance parameter approaches
0, and more likely to be a 1 as the Chance parameter approaches 100. The data in
Table 7.1 show expected probabilities (provided as the Chance parameter), and
the obtained probabilities of the Probability method returning a 1 on 100,000

Table 7.1
Results of Probability Test

Expected Observed Expected Observed
0 00.000 50 49.747
5 05.362 55 54.968
10 10.303 60 59.948
15 15.495 65 65.149
20 20.374 70 70.152
25 25.344 75 74.663
30 30.190 80 79.842
35 35.172 85 84.577
40 39.964 90 89.826
45 45.217 95 94.660

Experimental Functions 79

uses of the method. For each expected probability, the method was run 100,000
times, and then the results were summed and divided by 1,000 to create a percent
number with three decimal places. Figure 7.11 shows the Main method of a pro-
gram similar to that in Figure 7.10, except that food is delivered probabilistically
for each lever-press.

Signal Generation Methods

Experimental Functions can use two sets of methods, the Frequency Genera-
tor methods and the Pulse-Width Modulation methods, to produce square wave
signals on any I/O pin. Square waves are created when an I/O pin set to output
mode is rapidly activated and deactivated, causing an oscillation of current to be
produced. The frequency that the pin is toggled corresponds to the frequency of
the wave. The duration that the pin is active during one wavelength is known as
the pulse-width, or duty cycle. A standard square wave has a duty cycle of 50%.
That means the pin is on for 50% of the wavelength. Experimental Functions
provides methods that can modulate both the frequency and the pulse-width of
the square waves.

Figure 7.12 shows two square waves. The x-axis represents time, while the
y-axis represents signal strength. The lower points on the waves correspond to
an I/O pin being off, and the higher points on the waves correspond to the I/O
pin being on. Note that the square waves are always at one strength extreme or
another. The Propeller’s I/O pins are digital, so no intermediate (analog) states
are possible. The top square wave has an equal duration in the high and low
states, and therefore has a duty cycle of 50 percent. The duty cycle of the bottom
wave varies, generally being larger on the left, and smaller on the right.

PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset
			 IF EXP.Probability(70) == 1
				 Feeder.TurnOn
				 FeederStart := EXP.Time(0)
		 IF EXP.Time(FeederStart) > FeederDuration	
			 Feeder.TurnOff
Figure 7.11: Probability example program.

PROPELLER EXPERIMENT CONTROLLER80

Figure 7.12: Square waves.

The Frequency Generator methods can be used to generate up to two square
waves using any I/O pin. These methods result in highly accurate frequencies
with a fixed pulse-width of 50%. Typically, these methods are used to generate
tones. A frequency generated on a speaker in the range of 20 Hz to 20 kHz will
be audible to humans. Other species have different hearing ranges. Lower fre-
quencies can also be used to pulse lights and other devices.

The Frequency Generator methods make use of the cog’s counter registers.
This allows the frequency generators to work in the background without using an
additional cog. However, the counters should not be used for other purposes. See
the Propeller Manual (Martin, 2011) for more details on the Propeller’s count-
ers. Once the frequencies are set, the designated I/O pin(s) will pulse at that fre-
quency without delaying other tasks. In addition to generating frequencies on
the primary pin, inverted frequencies can be generated on another pin. The in-
verted pin will always be off when the primary pin is on, and vice versa. At high
frequencies, the inversion will not be apparent. This can be used to generate the
same tone on two audio channels with one frequency generator. At slower fre-
quencies, the inversion is obvious and can be used to do things such as blinking
two LEDs in alternation. If the frequency is 0, the inverted pin will always be on.
For some applications, such as audio signals, this is not noticeable. The use of
inverted pins also increases the number of I/O pins that can be used, from two

Experimental Functions 81

to four pins. However, only two independent frequencies can be created with the
Frequency Generator methods. Additional frequencies can be generated using
one or multiple instances of the EXP_FrequencyGenerator object. This object
uses the same methods as Experimental Functions, but each generator will need
to be started in a new cog.

The Pulse-Width Modulation (PWM) methods can be used to generate up to
32 square waves using any I/O pin and a modified version of Parallax’s PWM
object (Schwabe, 2009). These methods allow more frequencies to be generated
and allow the pulse-width to be adjusted. However, the signals generated at
high frequencies are not accurate. The PWM methods start to lose accuracy
at around 2 kHz, and by 4 kHz the accuracy loss is very noticeable. Use the
Frequency Generator methods when accuracy of higher frequencies is required.
PWM can also be used to generate tones. The pulse-width will affect the timbre
of the tone, while pitch is determined by the frequency.

Another major use of PWM is to emulate analog voltage. This technique can
be used to decrease the activity a device, such as an LED or motor, by provid-
ing a discontinuous source of power. For example, an LED powered by a 50%
duty cycle PWM signal will appear dimmer than an LED powered by a 90%
duty cycle PWM signal, as the LED powered by a 50% signal is only receiving
power 50% of the time. We do not perceive a flicker as the LED is constantly
toggled during a PWM signal. Instead we perceive a dimmer light. The point at
which we do not perceive individual stimuli is called the flicker fusion thresh-
old. The flicker fusion threshold varies greatly among species and is about 60 Hz
for humans. The default frequency of the PWM signals is 1 kHz; this should be
well above the flicker fusion threshold for any species. Similarly, PWM can also
be used to make motors appear to run slower by rapidly toggling power. In this
case, the duty cycle will correspond to the motor speed. Some remaining cur-
rent and inertia may cause the motor to continue moving during the off portion
of the wave. The optimal frequency of the PWM signal depends on the motor.
Although 5 kHz should work well for most motors, some experimentation may
be useful to find the best frequency. It is also important to consult the motor’s
datasheet.

The PWM methods can also be used to control servo motors. Servos are
motors with built-in position detection circuitry. Servos expect to receive a
signal every 2000 µs. The duration, or width, of the signal determines the servo's
position. Generally, a pulse-width of 1500 µs causes the servo to move to the
center position, while pulse-widths of 1000 and 2000 µs cause the servo to move
to the extreme positions.

The PWM methods launch a PWM generator, based on Parallax’s PWM
object (Schwabe, 2009), in a new cog. The generator will not interfere with other
cogs. Once the PWM generator is running, a signal can be generated on any
I/O pin. The frequency and duty cycle of any of the 32 signals can be modified

PROPELLER EXPERIMENT CONTROLLER82

independently. Once the frequencies and duty cycles are set, the designated I/O
pin(s) will generate those signals without delaying other tasks.

Experimental Functions also provides constants to easily reference musical notes.
These constants can be referenced in a program using the notation EXP#NoteName,
where NoteName is one of the note constants that can be seen in the Experimental
Functions file. This assumes that Experimental Functions has been imported as EXP
in the object section of the program. For example, EXP#E4 refers to the note E4, or
330 Hz. The constants can be used with either the Frequency Generator or the PWM
methods. The frequencies of the notes are rounded to the nearest hertz.

StartFrequencyGenerator(Pin, InvertedPin). This method starts a frequency
generator on a user-provided I/O pin. Optionally, it will generate an inverted
frequency on the inverted pin. Provide −1 as the InvertedPin parameter if an
inverted frequency is not desired. The generator works by using the counter
registers of the cog that called the StartFrequencyGenerator method. A second
generator can also be started in that cog. Simply call the method a second time
with a new pin to start a new generator. No frequency will be generated until a
specific frequency is provided with the SetFrequency method.

SetFrequency(Pin, Frequency). This method sets a frequency, in hertz, on an
I/O pin. The user must first start a generator on the I/O pin using the StartFre-
quencyGenerator method. If an inverted pin was specified in the StartFrequency-
Generator method, an inverted frequency will also be generated on the inverted
pin. Setting the frequency to 0 effectively turns off the frequency. Figure 7.13
shows a program that plays a 5-second tone on each lever-press. Note that this
program uses a manual event to record information about the tone. The manual
event is started immediately before the SetFrequency method sets the frequency
to the musical note C4 (262 Hz). The tone manual event is stopped immediately
after the SetFrequency method turns the frequency off by setting it to 0.

PlayNote(Pin, Note, Duration). This method sets a frequency on a pin for the
duration provided. Note that, like PulseOutput, it suspends all activity on that
cog until it is complete. This method provides a convenient way to play short
tones or melodies.

StopFrequencyGenerator(Pin). This method stops a frequency generator re-
lated to the provided pin. The frequency generator will also be stopped on the
inverted pin if one was provided in the StartFrequencyGenerator method. Once
all generators have been stopped, the counter registers can be used for other
purposes.

StartPWM. This method starts a cog that can generate PWM frequencies on
any I/O pin. The PWM generator only needs to be started once. A pin number
is not required. Once a pin has been used by the PWM cog, it cannot be used
as an input until the PWM cog has been stopped with the StopPWM method.

SetPWMFrequency(Pin, Percent, Frequency). This method generates a PWM
frequency on an I/O pin at the provided frequency, in hertz, with the provided

Experimental Functions 83

duty cycle, in percent. After a PWM frequency is set on an I/O pin, no addi-
tional commands are needed from the user. The signal will remain until the
user changes it or stops the signal generator cog. Figure 7.14 shows a program
where a 500 Hz shock is constantly delivered at 75% duty cycle. Pressing a lever de-
creases the intensity of the shock from 75% to 25% duty cycle for a 5-second period.

SetPWM(Pin, Percent). This method sets the duty cycle, in percent, on a pin
with a frequency of 1 kHz. This method is a simplified form of the SetPWMFre-
quency method. SetPWM is provided for ease of use and to maintain consistency
with previous versions of Experimental Functions.

CON
	 _clkmode = xtal1 + pll16x	
	 _xinfreq = 5_000_000
	 Off			 = 0
	 Onset 		 = 1
	 On 			 = 2
	 Offset 		 = 3
	 LeverPin		 = 5
	 SpeakerPin 	 = 7
	 ToneDuration	= 5_000
VAR
	 LONG	 ToneStart
OBJ
	 EXP:	 "Experimental_Functions"	
	 Lever: 	 "Experimental_Event"
	 Tone: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Tone.DeclareManualEvent(EXP.ClockID)
	 EXP.StartFrequencyGenerator(SpeakerPin, −1)		
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset
			 Tone.StartManualEvent
			 EXP.SetFrequency(SpeakerPin, EXP#C4)	
			 ToneStart := EXP.Time(0)
		 IF EXP.Time(ToneStart) > ToneDuration
			 EXP.SetFrequency(SpeakerPin, 0)
			 Tone.StopManualEvent
Figure 7.13: FrequencyGenerator example program.

PROPELLER EXPERIMENT CONTROLLER84

Servo(Pin, PulseWidth). This method creates a PWM signal for a servo with the
provided pulse-width, in microseconds. For servos, the minimum pulse is around
1000 µs and the maximum pulse is around 2000 µs. A pulse of 1500 µs typically
brings servos to a center position. To use this method, start the PWM cog with the
StartPWM method, then provide a pulse width in microseconds. Once the signal
has been set, the servo will continually receive that signal. No additional commands
are needed to maintain the servo's behavior. The example in Figure 7.15 is very sim-
ilar to that of Figure 7.13, except that a servo-actuated feeder is activated instead of

CON
	 _clkmode = xtal1 + pll16x	
	 _xinfreq = 5_000_000
	 Off			 = 0
	 Onset 		 = 1
	 On 			 = 2
	 Offset 		 = 3
	 LeverPin 	 = 5
	 ShockPin 	 = 7
	 ReliefDuration	= 5_000
VAR
	 LONG ReliefStart
OBJ
	 EXP:	 "Experimental_Functions"	
	 Lever: 	 "Experimental_Event"
	 Shock: 	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Shock.DeclareManualEvent(EXP.ClockID)
	 EXP.StartPWM
	 Shock.StartManualEvent
	 EXP.SetPWMFrequency(ShockPin, 75, 500)	
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset
			 Shock.StopManualEvent
			 EXP.SetPWMFrequency(ShockPin, 25, 500)
			 ReliefStart := EXP.Time(0)
		 IF EXP.Time(ReliefStart) > ReliefDuration
			 EXP.SetPWMFrequency(ShockPin, 75, 500)
			 Shock.StartManualEvent
Figure 7.14: PWM example program.

Experimental Functions 85

a tone on every lever-press. Servo-actuated feeders may include modern versions
of the classic pigeon hopper feeder or the rat dipper feeder, where the food or liquid
is temporarily brought into an animal’s reach for a short duration. In the program,
before the main repeat loop begins, the servo is put into a position that corresponds

with a 1200 µs signal. In practice, this might be the retracted position where the
food is not accessible to the animal. On each lever onset, the servo is changed to the
1800 µs position that could correspond to an extended position where the animal
can reach the food. The servo returns to the 1200 µs position after 5 seconds.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 Off			 = 0
	 Onset 		 = 1
	 On 			 = 2
	 Offset 		 = 3
	 LeverPin		 = 5
	 FeederPin	 = 7
	 FeederDuration	= 5_000
VAR
	 LONG	 FeederStart
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Feeder:	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment_NoData
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareManualEvent(EXP.ClockID)
	 EXP.StartPWM
	 EXP.Servo(FeederPin, 1200)
	 REPEAT
		 Lever.Detect
		 IF Lever.State == Onset
			 Feeder.StartManualEvent
			 EXP.SetFrequency(FeederPin, 1800)
			 FeederStart := EXP.Time(0)
		 IF EXP.Time(FeederStart) > FeederDuration
			 EXP.Servo(FeederPin, 1200)
			 Feeder.StopManualEvent
Figure 7.15: Servo example program.

PROPELLER EXPERIMENT CONTROLLER86

StopPWM. This method stops the PWM cog. This frees the cog and allows all
I/O pins used by that cog to be used again.

Number and String Conversion Methods

Experimental Functions provides two methods to convert between integers
and strings used to represent integers. These methods are provided to make Ex-
perimental Functions a comprehensive toolkit for many Propeller projects. They
are especially useful in conjunction with other techniques to display informa-
tion on the Parallax Serial Terminal, an LCD screen, or a computer monitor (see
Chapters 3 and 8 for more details on these applications). Note that these methods
are used to convert multi-digit numbers to strings, and vice versa. Single-digit
numbers can be easily converted into characters by adding "0" (decimal 48) to
the number. Likewise, subtracting "0" from a number character will result in the
actual integer value. For example, 5 + "0" is really 5 + 48, and equals 53, or the
character "5". See the character charts in Appendix C for a list of characters and
their decimal and hexadecimal forms.

ToStr(Number). This method converts an integer to a string. For example, the
integer 136 could be converted to the string "136". After converting the number
to a string, the string is stored in Experimental Functions’s variable space. The
ToStr method returns the address to this string so it can be used by other parts
of a program. The user should provide an integer as the Number parameter.

ToDec(StringAddress). This method converts a string representing an integer
to a decimal (base 10) integer. For example, the string "258" could be converted
to the integer 258. The user should provide the address of the string located in
memory as the StringAddress parameter. Commas and other symbols should
not be included in the string. Figure 7.16 shows an example of integer/string con-
version. First, a word-sized variable, NumberString is created to store a string
address, and a long-sized variable, NumberInteger, is created to store integers.
In the Main method, NumberString is first set to the string "1234". Recall that
the STRING instruction actually returns the address of the string in memory.
Thus, NumberString now contains the memory address of the string "1234".
NumberInteger is then assigned to be the integer conversion of NumberString
and is therefore the integer 1234. NumberInteger is then doubled, and Number-
String is set to the string conversion of the new value for NumberInteger. The
program results in NumberString representing the address to the string "2468".

Array Methods

Experimental Functions provides a long array that can be used in place of
user-generated arrays created in VAR or DAT blocks. Ultimately, the purpose
of providing this array is to conserve memory. Experimental Functions uses

Experimental Functions 87

the array itself when creating the data spreadsheet. Thus, the array is a reserved,
but unused space during the bulk of an experiment program. The default array
length is 2,000 longs. Each long is initialized to be −1. The array length can be
adjusted by modifying the MaximumInstances constant in Experimental Func-
tions. The array length is twice the constant MaximumInstances. Altering this
constant also changes the maximum instances of a single event that Experi-
mental Functions can save to the data spreadsheet. It should be modified with
caution. Because Experimental Functions uses the same array space, the array
must be cleared before using the SaveData methods.

Array. This method returns the address of the array in Experimental Func-
tions. The address can be used to read or modify the contents as with any other
long array. For example, the statement LONG[EXP.Array][0] := 1 assigns the
first long in the array to be the integer 1, and the statement X := LONG[EXP.
Array][199] assigns X to equal the 200th long in the array.

ClearArray. This method resets the array after it has been used. All long-sized
data in the array will become −1. The array must be reset before using the Save-
Data methods.

SD Card Methods

Experimental Functions provides several methods to allow the user to manu-
ally read and write files on the SD card. These methods use the same techniques
and cog that Experimental Functions normally uses to automatically write data
to the SD card. The SD Card methods are best used by only experienced pro-
grammers with a detailed understanding of the workflow of the PEC.

SDMountCard(DO, CLK, DI, CS). This method mounts the SD card in a new
cog. It returns 0 if successful. Once the SD card is mounted, files can be read and

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
VAR
	 WORD NumberString
	 LONG NumberInteger
OBJ
	 EXP: "Experimental_Functions"
PUB Main
	 NumberString := STRING("1234")
	 NumberInteger := EXP ToDec(NumberString)		
	 NumberInteger := NumberInteger * 2
	 NumberString := EXP.ToStr(NumberInteger)
Figure 7.16: Integer and string conversion example program.

PROPELLER EXPERIMENT CONTROLLER88

written on the card. The SD card will need to be unmounted in order to safely
transfer the files to a computer. The StartExperiment method normally mounts the
SD card, and the StopExperiment method normally unmounts the SD card. The
SD card can be manually used before StartExperiment and after StopExperiment.
The StartExperiment_NoData method also allows the users to manually mount
the SD card. As with the StartExperiment methods, the parameters DO, CLK, DI,
and CS refer the Data Out, Clock, Data In, and Chip Select pins of the SD card.

SDUnmountCard. This method unmounts the SD card, freeing the SD card.
Any opened files are also closed before the card is unmounted.

SDFileOpen(Name, Mode). The SDFileOpen method opens or creates a file
on the SD card for reading, writing, appending, or deleting. Only one file can
be opened at a time, so this method also closes any previously opened files. The
SDFileOpen method returns 0 if successful. A string address should be provided
for the parameter, Name. File names can be a maximum of eight characters,
plus a three-letter extension. The mode parameter determines the actions that
can be performed with the file. Provide the character "r" to open the file for
reading; "w" to open the file for writing; "a" to open the file for appending; and
"d" to delete the file. The writing and appending mode both allow information
to be written to the file, however, writing mode overwrites the existing file while
appending mode adds to the end of the file. If a file matching the file name is not
already present, writing and appending mode will create a new file. The example
in Figure 7.17 mounts the SD card, opens the file "File1.txt" for reading, opens
"File2.txt" for writing, opens "File3.txt" for appending, deletes "File4.txt", then
unmounts the SD card. Notice that the SDFileClose method is not needed; each
time a new file is opened, the previous file is closed. The SDUnmount file also
closes any open files.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 #0, DO, 	 #1, CLK,	 #2, DI, 	 #3, CS
OBJ
	 EXP: "Experimental_Functions"
PUB Main
	 EXP.SDMountCard(DO, CLK, DI, CS)
	 EXP.SDFileOpen(string("File1.txt"), "r")
	 EXP.SDFileOpen(string("File2.txt"), "w")
	 EXP.SDFileOpen(string("File3.txt"), "a")
	 EXP.SDFileOpen(string("File4.txt"), "d")
	 EXP.SDUnmountCard

Figure 7.17: SDFileOpen example program.

Experimental Functions 89

SDFileClose. This method closes the currently opened file. Closing the file is
required to save any of the contents that may have been modified in write or
append mode.

SDReadCharacter. This method reads a single byte character from a file previ-
ously opened in reading mode. The method starts by returning the first character
of the file. The next time the SDReadCharacter method is used, the second char-
acter will be returned. The method increments through the file, returning each
character. When the end of the file is reached, a −1 will be returned. Figure 7.18
shows an example of the SDReadCharacter method. A byte array, Character, is
created with 6 bytes. The first 5 bytes of Character are assigned to be the first 5
bytes found in "File1.txt". If the file contained the line "Hello world!", then the byte
array, Character, could be interpreted as the string "Hello". As Character[5] was not
assigned, it remains a 0, and is thus suitable for the end of a null-terminated string.

SDReadSequence(ResultArrayAddress, ResultArrayLength, Delimiter). This method
reads a sequence of characters from a file opened in reading mode. The sequence
will be stored in a results array that has been already created by the user, and the
address of that array will be returned. The SDReadSequence method requires
the user to supply the memory address of the results array, using the @ operator,
as well as the length of the results array. The results array must be large enough
to accommodate the sequence that will be read. The method stops reading from
the file at the end of the sequence, noted by a predefined delimiter character,
such as a comma or period. The user must provide the delimiter character as

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 #0, DO, 	 #1, CLK, #2, DI, 	 #3, CS
VAR
	 BYTE Character[6]
OBJ
	 EXP: "Experimental_Functions"
PUB Main
	 EXP.SDMountCard(DO, CLK, DI, CS)
	 EXP.SDFileOpen(string("File1.txt"), "r")
	 Character[0] := EXP.SDReadCharacter
	 Character[1] := EXP.SDReadCharacter
	 Character[2] := EXP.SDReadCharacter
	 Character[3] := EXP.SDReadCharacter
	 Character[4] := EXP.SDReadCharacter
	 EXP.SDUnmountCard
Figure 7.18: SDReadCharacter example program.

PROPELLER EXPERIMENT CONTROLLER90

the parameter, Delimiter. Any unused values in the results array will be set to 0.
Similar to the use of SDReadCharacter, repeatedly using the SDReadSequence
method will allow the user to read through each sequence in the file.

The example shown in Figure 7.19 uses the SDReadSequence method to read
a sequence in "File1.txt". The SDReadSequence method starts readying the file
with the first character and stops with the first occurrence of the delimiter char-
acter, "/". If the file contains the line "Hello world!/", then the Parallax Serial
Terminal will display the string "Hello world!". However, if the delimiter pa-
rameter was a space (" "), the Parallax Serial Terminal will only display "Hello".
As the SDReadSequence method returns the address of the results array it can
be combined with other instructions requiring an array address to reduce lines
of code. In this example the EXP.SDReadSequence and PST.Str instructions can
be combined into: PST.Str(EXP.SDReadSequence(@SequenceArray, 100, "/"))

SDWriteCharacter(Character). This method writes a single character to a
file opened for writing or appending. It returns 0 if successful. The example in
Figure 7.20 results in a file, "TestFile.txt", being created on the SD containing the
line "TEST". Because the file is opened for writing, if the file was already present
on the SD card, it will be overwritten.

SDWriteString(StringAddress). This method writes the string at the provided
address, StringAddress, to a file opened for writing or appending. This method
does not write the string’s null-terminator character. If successful, this method
returns the number of characters written. The example in Figure 7.21 opens the
file "TestFile.txt" for appending. It creates a new line with the characters 13 and

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 #0, DO, 	 #1, CLK,	 #2, DI, 	 #3, CS
VAR
	 BYTE	 SequenceArray[100]
OBJ
	 EXP:	 "Experimental_Functions"	
	 PST: 	 "Parallax Serial Terminal"
PUB Main
	 PST.Start(115_200)
	 EXP.SDMountCard(DO, CLK, DI, CS)
	 EXP.SDFileOpen(string("File1.txt"), "r")
	 EXP.SDReadSequence(@SequenceArray, 100, "/")
	 PST.Str(@SequenceArray)
	 EXP.SDUnmountCard
Figure 7.19: SDReadSequence example program.

Experimental Functions 91

10 (see the character charts in Appendix C for more information about special
characters). Then, it writes the string "Test number: ". Next, it uses the EXP.ToStr
method to convert the integer 123 to a string and writes the result in the file. The
program will result in a new line being added to the file containing the line "Test
number: 123". If the file was not already present, a new file will be created.

SDWriteSeconds(Milliseconds). This method converts a millisecond integer
into a string representing seconds, with a three decimal place fraction. The
string is then written to the file currently opened for writing or appending. This
method does not write the string’s null-terminator character. For example, the
instruction EXP.SDWriteSeconds(1234) would write the string "1.234" to the file.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 #0, DO, 	 #1, CLK, #2, DI, 	 #3, CS
OBJ
	 EXP:	 "Experimental_Functions"
PUB Main
	 EXP.SDMountCard(DO, CLK, DI, CS)
	 EXP.SDFileOpen(string("TestFile.txt"), "w")
	 EXP.SDWriteCharacter("T")
	 EXP.SDWriteCharacter("E")
	 EXP.SDWriteCharacter("S")
	 EXP.SDWriteCharacter("T")
	 EXP.SDUnmountCard
Figure 7.20: SDWriteCharacter example program.

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 #0, DO,	 #1, CLK,	 #2, DI,	 #3, CS
OBJ
	 EXP:	 "Experimental_Functions"
PUB Main
	 EXP.SDMountCard(DO, CLK, DI, CS)
	 EXP.SDFileOpen(string("TestFile.txt"), "a")
	 EXP.SDWriteCharacter(13)
	 EXP.SDWriteCharacter(10)
	 EXP.SDWriteString(STRING("Test number: "))	
	 EXP.SDWriteString(EXP.ToStr(123))
	 EXP.SDUnmountCard
Figure 7.21: SDWriteString example program.

PROPELLER EXPERIMENT CONTROLLER92

Memory File Methods

Experimental Functions offers a few methods to manually interact with the
memory file. These methods are advanced and should only be implemented by
users with a good understanding of the standard PEC program workflow.

QuickSaveMemory. This method quickly closes and re-opens the memory file
to save the information currently recorded. This method may be useful in ex-
periments with longer sessions, especially when there is potential for the power
source to be interrupted.

QuickSaveCustomMemory(MemoryFile). This method functions similarly to
QuickSaveMemory, except that it permits custom memory file, provided by the
string address parameter MemoryFile, to be used instead of the default “memory.
txt” file. This method should be used if StartExperimentCustomMemory is used.
Note that long file names are not supported. File names can be a maximum of
eight characters, plus a three-letter extension.

CreateMemoryFile(MemoryFile). This method creates a new memory file with
a name provided by the string address parameter, MemoryFile. This method
can be used to create a memory file for a new session after the data from the first
session has been saved. File names can be a maximum of eight characters, plus
a three-letter extension.

Record Methods

The Record methods are used to quickly save information to the memory file
during the course of an experiment session. These methods require one or mul-
tiple Experimental Event objects. During an experiment, each Experimental
Event can pass information to Experimental Functions using the Record meth-
ods. Experimental Functions then saves this information to the memory file.

Record(State, ID, EventTime). This method is used to record data about input
events, output events, and manual data events. The Record method requires a
State parameter to record event states. Only onsets and offsets will be recorded.
As the Detect, DetectInverted, TurnOn, TurnOff, StartManualEvent, and Stop-
ManualEvent methods from Experimental Event all return the event state, they
are designed to be nested inside the Record method. This allows for any instruc-
tion in Experimental Event that detects or affects an event to be easily recorded.
The ID parameter is the ID of the event that will be written in the memory file.
When an Experimental Event is declared, it is automatically assigned an event ID.
The event ID can be provided to the Record method with Experimental Event’s
ID method. The EventTime parameter refers to the time that will be recorded if
the event state is an onset or an offset. Typically, the current time will be provided.

Figure 7.22 shows a modification of the program first described in Figure 7.5.
The program activates a feeder for 5 seconds any time the lever’s state is an onset

Experimental Functions 93

CON
	 _clkmode = xtal1 + pll16x	
	 _xinfreq	 = 5_000_000
	 Off	 = 0
	 Onset 	 = 1
	 On 	 = 2
	 Offset 	 = 3
	 DO 	 = 0
	 CLK	 = 1
	 DI	 = 2
	 CS	 = 3
	 LeverPin 	 = 5
	 FeederPin = 7
	 FeederDuration = 5_000
	 SessionDuration = 300_000
VAR
	 LONG	 FeederStart
	 LONG	 Start
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Feeder:	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment(DO, CLK, DI, CS)
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)				
	 Start := EXP.Time(Start)
	 REPEAT UNTIL EXP.Time(Start) > SessionDuration
		 EXP.Record(Lever.Detect, Lever.ID, EXP.Time(Start))			
		 IF Lever.State == Onset
			 EXP.Record(Feeder.TurnOn, Feeder.ID, EXP.Time(Start))
			 FeederStart := EXP.Time(0)
		 IF EXP.Time(FeederStart) > FeederDuration
			 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 IF Lever.State == Onset OR Lever.State == On
		 EXP.Record(Offset, Lever.ID, EXP.Time(Start))
Figure 7.22: Record example program.

PROPELLER EXPERIMENT CONTROLLER94

during a 5-minute session. To modify the program to record data, the StartExper-
iment_NoData method was changed to StartExperiment, and the connections
to the SD card were provided as parameters. Then, each Detect, TurnOn, and
TurnOff method was wrapped in a Record method. For example, the first line of
the main repeat loop was Lever.Detect. The line now becomes EXP.Record(Lever.
Detect, Lever.ID, EXP.Time(Start)). When this code runs, the lever’s state is de-
tected just as before. The state is also passed to the Record method, along with the
lever’s ID, and the time since the session start. If an onset or offset was detected, it
will be recorded to the memory file. The last two lines of code evaluate if the lever
was in the onset or on state when the session ended. If so, an onset was written
to the memory file, so an offset needs to be written as well. The last line forces an
offset to be recoded using the lever event’s ID. This last step is technically optional
but forcing the program to write offsets for any ongoing events cleans up the data
considerably. Note that nothing happens to the information in the memory file
yet. Additional methods will be used to transform the memory file into a data
spreadsheet.

RecordRawData(Integer, ID, EventTime). This method saves integer data for
raw data events. Like the Record method, the information is saved to the memory
file. This method should be used only when some raw integer data have been
collected. Figure 7.23 shows a modification of Figure 7.22 where an additional
Experimental Event, Pulse, is added, as well as a hypothetical HeartRateSensor
object, referred to as HRS. The RecordRawData event records the pulse using the
HRS.BMP method on each lever onset. Although the use of the HRS object is just
a hypothetical demonstration, this general technique is very useful when record-
ing information from analog or complex devices. To reduce figure size, constants
are provided in list form.

SaveData Methods

The SaveData methods are all related to creating the data spreadsheet at the
end of an experiment from the information stored in the memory file. These
should be used after the experiment is complete to create the data spreadsheet.
During this process, the Propeller searches through memory file for informa-
tion about a specific event. The Propeller is able to store information, about
1,000 instances of the event, in Experimental Functions’s memory array (see
the Array Methods section). Then, additional information about the event is
derived, and detailed information is saved on the data spreadsheet. If more than
1,000 instances of an event occur, only the first 1,000 will be saved to the data
spreadsheet. The 1,000-instance limit can be adjusted by changing the constant
MaximumInstances in Experimental Functions. This can be done to increase
the limit, or to free more memory for other aspects of the program. In practice,
the 1,000-instance limit should rarely be a concern.

Experimental Functions 95

PrepareDataOutput. This method creates the data spreadsheet file named
"data.csv". It then adds the headings for each column: Event, Instance, Onset,
Offset, Duration, Inter-Event Interval, Total Duration, and Total Occurrences.
This method also closes the memory file automatically. The PrepareDataOutput
method should be used after the experiment is complete.

PrepareCustomDataOutput(DataFile). This method is similar to the Pre-
pareDataOutput file, except that it uses a custom data spreadsheet name pro-

CON
	 _clkmode = xtal1 + pll16x	
	 _xinfreq = 5_000_000
	 #0, Off,	 #1, Onset,	 #2, On,	 #3, Offset
	 #0, DO,	 #1, CLK,	 #2, DI,	 #3, CS
	 #5, LeverPin = 5,	 #7, FeederPin
	 #5_000, FeederDuration, 	 #300_000, SessionDuration
VAR
	 LONG	 FeederStart
	 LONG	 Start
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Feeder:	 "Experimental_Event"
	 HRS:	 "HeartRateSensor"
	 Pulse:	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment(DO, CLK, DI, CS)
	 Lever.DeclareInput(LeverPin, EXP.ClockID)	
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 Pulse.DeclareRawData(EXP.ClockID)
	 Start := EXP.Time(Start)
	 REPEAT UNTIL EXP.Time(Start) > SessionDuration
		 EXP.Record(Lever.Detect, Lever.ID, EXP.Time(Start))
		 IF Lever.State == Onset
			 EXP.Record(Feeder.TurnOn, Feeder.ID, EXP.Time(Start))
			 FeederStart := EXP.Time(0)
			 EXP.RecordRawData(HRS.BPM, Pulse.ID, EXP.Time(Start))
		 IF EXP.Time(FeederStart) > FeederDuration
			 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 IF Lever.State == Onset OR Lever.State == On
		 EXP.Record(Offset, Lever.ID, EXP.Time(Start))
Figure 7.23: RecordRawData example program.

PROPELLER EXPERIMENT CONTROLLER96

vided as the string address parameter, DataFile. User specified data spreadsheet
names allow for multiple data spreadsheets to be written for one experiment,
perhaps splitting the events into two spreadsheets. This could allow a single
program to monitor several experimental apparatuses and create a data
spreadsheet for each subject. Custom data spreadsheet names also allow for
multiple data spreadsheets to be written for multiple consecutive sessions (e.g.,
"data1.csv", "data2.csv", "data3.csv", etc.). Note that long file names are not sup-
ported. File names can be a maximum of eight characters, plus a three-letter
extension.

SaveData(ID, Name). This method can be called after the experiment ends,
and after the PrepareData method has created a data spreadsheet. The SaveData
method searches through the memory file for any event matching the provided
ID and saves detailed information in the data spreadsheet using the provided
string address parameter, Name. Figure 7.24 builds upon the example from
Figure 7.23. Previously, the Record method was added to record information
about events in the memory file. Now, the PrepareDataOutput and SaveData
methods are added to create the data spreadsheet. The Shutdown method stops
the SD card cog (as well as the experiment clock), allowing the SD card contain-
ing the finished data spreadsheet to be transferred to the computer. Note that
the heart rate data have not been saved yet. To reduce figure size, constants are
provided in list form.

SaveCustomData(ID, Name, MemoryFile, DataFile). This method functions
similarly to the SaveData method, except that both the memory file and the data
spreadsheet name can be customized. File names can be a maximum of eight
characters, plus a three-letter extension.

PrepareDataOutputForRawData(DataFile). This method is used to prepare a
data spreadsheet for a raw data event. Raw data events are used to record inte-
gers at instantaneous points in time and thus do not have an onset, offset, or
duration. The column headers for other event types, as created by the Prepare-
DataOutput and PrepareCustomDataOutput methods, are not appropriate for
raw data events. Therefore, the PrepareDataOutputForRawData method uses
the headers: Event, Instance, Time, Data, Inter-Event Interval, and Total Oc-
currences. This method will create a new data spreadsheet, if a data spreadsheet
matching the name provided by the string address parameter, DataFile, is not
found. However, if a data spreadsheet is found, this method will skip one line,
and then add the raw data headers to that file. If adding raw data to an existing
data file, the PrepareDataOutputForRawData method should be used after all
other data are saved. If you want to save raw data into a separate data file, simply
provide a unique file name. File names can be a maximum of eight characters,
plus a three-letter extension.

SaveRawData(ID, Name, Memoryfile, Datafile). This method functions simi-
larly to the SaveCustomData method, except that it is used to save information

Experimental Functions 97

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 #0, Off, 	 #1, Onset,	 #2, On,	 #3, Offset
	 #0, DO, 	 #1, CLK,	 #2, DI, 	 #3, CS
	 #5, LeverPin,		 #7, FeederPin
	 #5_000, FeederDuration,	 #300_000, SessionDuration
VAR
	 LONG	 FeederStart
	 LONG	 Start
OBJ
	 EXP:	 "Experimental_Functions"	
	 Lever: 	 "Experimental_Event"
	 Feeder:	 "Experimental_Event"
	 HRS:	 "HeartRateSensor"
	 Pulse:	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment(DO, CLK, DI, CS)
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 Pulse.DeclareRawData(EXP.ClockID)
	 Start := EXP.Time(Start)
	 REPEAT UNTIL EXP.Time(Start) > SessionDuration
		 EXP.Record(Lever.Detect, Lever.ID, EXP.Time(Start))
		 IF Lever.State == Onset
			 EXP.Record(Feeder.TurnOn, Feeder.ID, EXP.Time(Start))
			 FeederStart := EXP.Time(0)
			 EXP.RecordRawData(HRS.BPM, Pulse.ID, EXP.Time(Start))	
		 IF EXP.Time(FeederStart) > FeederDuration
			 EXP.Record(Feeder.TurnOff, Feeder ID, EXP.Time(Start))
	 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 IF Lever.State == Onset OR Lever.State == On
		 EXP.Record(Offset, Lever.ID, EXP.Time(Start))
	 EXP.PrepareDataOutput
	 EXP.SaveData(Lever.ID, STRING("Lever"))
	 EXP.SaveData(Feeder.ID, STRING("Feeder"))
	 EXP.Shutdown
Figure 7.24: SaveData example program.

PROPELLER EXPERIMENT CONTROLLER98

CON
	 _clkmode = xtal1 + pll16x
	 _xinfreq = 5_000_000
	 #0, Off, 	 #1, Onset,	 #2, On,	 #3, Offset
	 #0, DO, 	 #1, CLK,	 #2, DI,	 #3, CS
	 #5, LeverPin,		 #7, FeederPin
	 #5_000, FeederDuration,	 #300_000, SessionDuration
VAR
	 LONG	 FeederStart
	 LONG	 Start
OBJ
	 EXP:	 "Experimental_Functions"
	 Lever: 	 "Experimental_Event"
	 Feeder:	 "Experimental_Event"
	 HRS:	 "HeartRateSensor"
	 Pulse:	 "Experimental_Event"
PUB Main
	 EXP.StartExperiment(DO, CLK, DI, CS)
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 Pulse.DeclareRawData(EXP.ClockID)
	 Start := EXP.Time(Start)
	 REPEAT UNTIL EXP.Time(Start) > SessionDuration
		 EXP.Record(Lever.Detect, Lever.ID, EXP.Time(Start))
		 IF Lever.State == Onset
			 EXP.Record(Feeder.TurnOn, Feeder.ID, EXP.Time(Start))
			 FeederStart := EXP.Time(0)
			 EXP.RecordRawData(HRS.BPM, Pulse.ID, EXP.Time(Start))
		 IF EXP.Time(FeederStart) > FeederDuration
			 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 IF Lever.State == Onset OR Lever.State == On
		 EXP.Record(Offset, Lever.ID, EXP.Time(Start))
	 EXP.PrepareDataOutput
	 EXP.SaveData(Lever.ID, STRING("Lever"))
	 EXP.SaveData(Feeder.ID, STRING("Feeder"))
	 EXP.PrepareDataOutputForRawData
	 EXP.SaveRawData(Pulse.ID, STRING("Heart rate (bpm)"))
	 EXP.Shutdown
Figure 7.25: SaveRawData example program.

Experimental Functions 99

about raw data events. Raw data events use a different header system, so they
should be saved in a separate data file or saved after all other events. File names
can be a maximum of eight characters, plus a three-letter extension. Figure
7.25 adds to the previous example and prepares the data spreadsheet for raw
data after the other events have been saved. Then, the heart rate data are saved
using the SaveRawData method. Finally, the shutdown method unmounts the
SD card and stops the experiment clock. To reduce figure size, constants are
provided in list form.

SaveMPCData(ID, OnsetCode, OffsetCode, MemoryFile, Datafile). This method
saves data recorded during an experiment in a MedPC style format. The standard
MedPC output is minimalistic and is usually sorted by some other program. The
SaveMPCData method is provided so that users already having software to sort
their MedPC data output can still use the PEC with very few adjustments in how
the data are interpreted. The MedPC format often lists events in plain text file
with the format time.code, where time is the time the event occurred, and code
is some integer code for the event. As the MedPC system is designed to primar-
ily record the onset of an event, onsets and offsets of each event will be saved
separately using different codes. For example, after an experiment is complete,
lever-press data could be saved using the code EXP.SaveMPCData(Lever.ID,
STRING("001"), STRING("002")). In the data file, lever onsets would be listed as
time.001 and offsets would be listed as time.002. If the lever was pressed from 10
seconds to 12 seconds, 10000.001 would show the onset, in milliseconds, on one
line, while 12000.002 would show the offset on another line. The parameters On-
setCode, OffsetCode, MemoryFile, and DataFile must all be provided as string
addresses. File names can be a maximum of eight characters, plus a three-letter
extension. Because the MPC format is typically used to create text files sorted
by another program, no PrepareDataOutput method is required to generate a
spreadsheet and add column headers.

SaveRawMPCData(ID, TimeCode, DataCode, MemoryFile, Datafile). This method
functions similarly to the SaveMPCData method, except that it saves integer data
from raw data events. The time of measurement and the data collected are saved
separately using different codes. Figure 7.26 shows a modification of the previous
example that saves MedPC formatted data. The CON, VAR, and OBJ blocks have
been removed to reduce figure size. Data for each event are saved using the Save-
MPCData and SaveRawMPCData methods. A DAT block is included to store the
strings needed by these methods. Notice the @ operator is used to provide the
address of these strings. In this example, the default memory file name was used.
The data file, however, is saved as a text file instead of a comma-separate value
file. This is because the formatting of the MPC output will not benefit from being
viewed in a spreadsheet program.

PROPELLER EXPERIMENT CONTROLLER100

PUB Main
	 EXP.StartExperiment(DO, CLK, DI, CS)
	 Lever.DeclareInput(LeverPin, EXP.ClockID)
	 Feeder.DeclareOutput(FeederPin, EXP.ClockID)
	 Pulse.DeclareRawData(EXP.ClockID)
	 Start := EXP.Time(Start)
	 REPEAT UNTIL EXP.Time(Start) > SessionDuration
		 EXP.Record(Lever.Detect, Lever.ID, EXP.Time(Start))
		 IF Lever.State == Onset
			 EXP.Record(Feeder.TurnOn, Feeder.ID, EXP.Time(Start))
			 FeederStart := EXP.Time(0)
			 EXP.RecordRawData(HRS.BPM, Pulse.ID, EXP.Time(Start))
		 IF EXP.Time(FeederStart) > FeederDuration
			 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 EXP.Record(Feeder.TurnOff, Feeder.ID, EXP.Time(Start))
	 IF Lever.State == Onset OR Lever.State == On
		 EXP.Record(Offset, Lever.ID, EXP.Time(Start))
	 EXP.SaveMPCData(Lever.ID, @L_Onset, @L_Offset, @MemoryFile,@DataFile)
	 EXP.SaveMPCData(Feeder.ID, @F_Onset, @F_Offset, @MemoryFile, @DataFile)
	 EXP.SaveRawMPCData(Pulse.ID, @H_Time, @H_Data, @MemoryFile, @DataFile)
	 EXP.Shutdown	
DAT
	 L_Onset	 BYTE	 "001", 0
	 L_Offset	 BYTE	 "002", 0
	 F_Onset	 BYTE	 "003", 0
	 F_Onset	 BYTE	 "004", 0
	 H_Time	 BYTE	 "005", 0
	 H_Data	 BYTE	 "006", 0
	 MemoryFile	 BYTE	 "memory.txt", 0
	 DataFile	 BYTE	 "data.txt", 0
Figure 7.26: SaveMPCData and SaveRawMPCData example program. Note that short inden-
tations were used for this program to ensure that the figure fit within a single page. Indenta-
tion size does not affect the program's function.

