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A No-Go Theorem for the Mind–Body Problem: An Informal 
Proof that No Purely Physical System Can Exhibit All the 

Properties of Human Consciousness

Catherine M. Reason

London, United Kingdom

This article presents an operationalized solution to the mind–body problem which relies 
on a well-defined effective procedure rather than philosophical argument. I identify a spe-
cific operation which is a necessary property of all healthy human conscious individuals 
— specifically the operation of self-certainty, or the capacity of healthy conscious humans 
to “know” with certainty that they are conscious. This operation is shown to be incon-
sistent with the properties possible in any meaningful definition of a physical system. I 
demonstrate this inconsistency by proving a “no-go” theorem for any physical system 
capable of human logical reasoning, if this reasoning is required to be both sound and 
consistent. The proof of this theorem is both general — it applies to any function whereby 
evidence affects the state of some physical system — and recursive, since any physical pro-
cess subserving a function of this type is shown to imply another such function. Thus, for 
at least one aspect of human consciousness, the mind–body problem is resolved.
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This is the second in a series of papers, which develop and formalize Caplain’s 
1995 argument, that consciousness cannot be a computational property. In a 
previous paper (Reason, 2016), I showed that Caplain’s argument could be gener-
alized from computational properties to all physical properties, and that this could 
be done without relying on philosophical concepts such as knowledge or belief. 
This paper however contained two significant weaknesses. The first weakness is 
that the argument relied on an assumption that all relevant mental processes can 
be represented as functions, and this assumption was never properly justified or 
made explicit. The argument also relied on an assumption that all healthy con-
scious human beings are capable of an operation described as self-certainty, or 
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the ability to assert with certainty that they are in fact conscious. It is clear that 
many philosophers and cognitive scientists do not in fact accept this assumption.

In this paper, the reasoning behind Caplain’s argument will be separated into 
two parts. Argument A from Reason (2016) will be expressed as the proof of a 
mathematical theorem, to the effect that no physical system capable of humanlike 
reasoning can assert that it is unconditionally certain of any proposition. This 
theorem will be called Theorem A, and its proof will be designated as Proof A, in 
accordance with the practice in Reason (2016).

I shall then prove a second brief lemma, to be called the Cartesian lemma, which 
will show how Theorem A can be extended to cover not only statements about 
consciousness but also statements about existence. This will show that, just as no 
physical system capable of humanlike reasoning can be certain that it is conscious, 
no such physical system can be certain of its own existence. This will place severe 
constraints on the viability of any materialist or physicalist theory of consciousness.

The logic behind Proof A will be straightforward, but the notation required 
to prove Theorem A to a satisfactory standard of rigor may seem dense and 
rather opaque at first sight. In order to emphasize the intrinsic simplicity of the 
proof, a verbal summary of the proof will therefore be included after the detailed 
exposition. Readers who are unused to following mathematical proofs may also 
find it useful to consult Reason (2016) before attempting to follow the detailed 
proof. Such readers should also bear in mind that there are significant differences 
between the proof of a mathematical theorem and the sort of arguments which 
are used to defend a philosophical thesis.

On the Difference between a Mathematical Proof and a Philosophical Argument

The difference between the types of arguments typically found in the philoso- 
phical literature, and a proof or derivation in formal logic, are summarized in an 
excellent article by Terence Parsons (1996). Since mathematical proofs have essen-
tially the same structure as proofs in formal logic, Parsons’ remarks may also be 
taken to apply to the differences between philosophical arguments and mathemat-
ical proofs. While proofs of this sort are rarely applied to problems in philosophy 
or cognitive science, readers from those disciplines should be aware that proofs 
are actually quite common in the natural sciences. In quantum mechanics, for 
example, it is common practice to show that some particular state of affairs is 
inconsistent with the basic principles of quantum mechanics by proving what is 
called a “no-go theorem” (see, for example, Bell, 1964 and Kochen and Specker, 
1967). The proof in this paper can be regarded as an application of this method to 
theoretical psychology, rather than to theoretical physics.

To prove a no-go theorem, one must start by formalizing a set of axioms. By 
applying a given set of logical rules to these axioms, one can derive a conclusion. 
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Since this conclusion will necessarily follow from the set of axioms, any class of 
entities (say, theories or propositions) which satisfies that particular set of axioms 
will necessarily entail the same conclusion. A simple example from pure mathe-
matics will serve to illustrate the point. In number theory the notion of the “size” 
of a number is formalized in terms of what is called the cardinality of sets. Any 
two sets are defined as having the same cardinality if the elements of one set can 
be put into one-to-one correspondence with the elements of the other. Any result 
proven for some particular cardinality will therefore also apply to any number 
which can be expressed in terms of that particular cardinality. For example, if one 
defines a set of cardinality seven, then any result necessarily true of seven will also 
be true of any other set of seven elements, since every set of seven elements can 
be put into one-to-one correspondence with the set seven. 

It is important to note here a significant difference between the type of formal 
definition used in mathematical theory and the sorts of definitions used in, say, 
philosophy of mind or metaphysics. A philosophical definition is usually taken 
to be a description of the entity being described, and a satisfactory philosophical 
definition is therefore required to be as detailed as possible. A formal definition 
in mathematics, however, simply denotes a class of entities which satisfies that 
definition. The more general the definition, the larger the class of entities which 
it denotes. One can therefore see that from a philosophical perspective, a given 
definition may be simply vague; whereas from a mathematical perspective, the 
same definition may be sufficiently general to apply to an extremely broad class of 
systems, and that any result proved for such a broad class is extremely powerful. 
What is simply a weakness from a philosophical standpoint, therefore, can be seen 
to be a significant advantage from a mathematical one. This is the key advantage 
which the mathematical approach has over the philosophical one — the property 
of generality.

The mathematical method can be applied to the mind–body problem as follows. 
First, consciousness must be formalized in terms of an operation called self- 
certainty, which will be described more fully in a later section. This makes it 
possible to express consciousness in terms of a simple function (the function of 
answering a YES/NO question). Self-certainty is thus a specific example of a general 
class of functions, consisting of all functions which answer YES/NO questions.

If it can then be shown that, for a given class of physical systems, no YES/NO 
question can be answered with certainty, it will be clear that self-certainty is impos-
sible in that class of physical systems. The necessary class of physical systems is 
that class of physical systems which can exhibit humanlike logical reasoning, since 
human beings must by definition exhibit humanlike reasoning. Any system capa-
ble of humanlike logical reasoning will be called H.

The proof which is to be presented here is the sequence of inferences in H 
which establish that no physical system reasoning in H can answer any YES/NO 
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question with certainty. Therefore, if this proof is sound, no physical system capa-
ble of reasoning in H is capable of self-certainty. It follows that, if we assume that 
all healthy conscious human beings are capable of self-certainty, we have shown 
that no healthy human being can be an exclusively physical system. 

The proof requires us to make two additional assumptions explicit:

1. Any mental process supervenes on some physical process;

2. No randomly selected physical process can be assumed a priori to perform any 
given function.

The proof can now be expressed as a couplet of statements:

By 1, the function of answering any YES/NO question must be performed by 
some physical process;

By 2, the accuracy of any physical process can be expressed as the function 
of answering a YES/NO question such as “Is this process randomly selected?” 

This couplet clearly generates an infinite regress. This is the essential outline of 
Proof A. Because the proof can be summarized as a couplet of sentences, I have 
elsewhere sometimes referred to Theorem A as the Gemini theorem. Much of the 
rigorous form of Proof A will be devoted to showing that every YES/NO question 
satisfies the mathematical definition of a function.

The Concept of Self-Certainty

It is unnecessary to become embroiled in metaphysical speculations about the 
nature of consciouness. Consciousness itself will therefore be formalized in terms 
of the operation of self-certainty, defined as follows:

Definition: Self-certainty is the capacity of at least some conscious beings to verify 
with absolute certainty that they are conscious — that is, to give the answer YES 
to the question “Am I certainly conscious?”

It is important to emphasize that it is only absolute certainty which is at issue 
here. Caplain’s proof does not imply that physical systems cannot be reasonably 
certain of being conscious, or that they might have a certainty of being con-
scious which is contingent on additional assumptions. For example, Chalmers 
(2012) postulates an analogous situation involving mathematical reasoning; in 
this example an expert mathematician is given cause to doubt the accuracy of 
his own mathematical musings by being offered the possibility that he has been 
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administered some sort of drug which destroys the capacity for mathematical 
reasoning. Chalmers suggests that the mathematician could regain confidence 
in the accuracy of his own cogitations by insulating himself from all such ques-
tions (that is to say, by ignoring them). Certainty of this sort, which depends on 
additional assumptions, is not covered by Caplain’s proof and does not constitute 
self-certainty. We can express this as follows:

Condition 1: An entity is self-certain only if its certainty is absolute (beyond any 
possibility of error) and this certainty does not depend on additional assumptions.

It is also necessary to emphasize that self-certainty does not require assumptions 
to be made about the nature of consciousness. Any such assumptions — for example, 
that consciousness equates to wakefulness, or that consciousness requires some 
specific sort of self-awareness — should therefore not be made. A conscious being 
might, for example, be experiencing a lucid dream or some other altered state of 
consciousness. So long as the conscious being can verify that it is in some conscious 
state or other, the requirement for self-certainty is satisfied. We express this as:

Condition 2: Self-certainty does not require that the conscious state which is 
found to exist has any particular property or set of properties. 

The significance of this condition cannot be overstated. It has repeatedly been 
pointed out to me that nothing can be inferred about the nature of conscious-
ness from such formalized definitions. Condition 2 illustrates that this situation 
is intentional. The no-go theorem to be proved in this paper depends on this 
formal definition alone, and not on any philosophical notions about what con-
sciousness is or should be. To underline this, one can express self-certainty as 
illusory self-certainty, as in the sentence “It is absolutely certain that I have at least 
the illusion of being conscious” without affecting the validity of the proof.

Assumptions Necessary for the Proof of Theorem A

In order to express the proof in a form that can reasonably be described as 
rigorous, it is necessary to list the assumptions and premises on which the proof 
depends, in a clear and unequivocal form.1 Let us start by defining a physical system 
as some set of physical processes, where a physical process is defined as follows:

Definition: A physical process is any entity which has an objective existence and is 
capable of evolving in time.

1 The premises listed here were originally given in Reason (2016). They are presented here in an 
expanded form, together with explanations as to why they have been chosen.
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I have made no attempt here to explicate what is meant by the terms objective 
existence and time. If necessary, one can define objectivity in terms of some set 
of observers, whose observations of some given physical process are related by 
some transformation group — say, the Lorentz group. Time can be regarded as 
just some parameter which governs the evolution of such a system. In the future 
it may turn out to be necessary to explicate these terms further; at the moment, 
however, I believe such a degree of elaboration is simply unnecessary and beyond 
the scope of this paper.

Philosophers use the notion of supervenience to refer to entities which are not 
themselves physical systems but whose existence is nonetheless consistent with 
the doctrine of physicalism. An entity S is said to be supervenient on some basis 
B if two things which have the same B properties must have the same S properties 
(Kim, 1984). Mental processes are thus assumed to supervene on physical pro-
cesses. Hence the following expression:

Principle of Physicalism: All mental processes supervene on some physical process 
or set of processes.2 (The notion of a mental process will be expressed more for-
mally in the next section.) 

The next two premises refer to the rules of logical inference by which Caplain’s 
proof can be established. In the natural sciences, no-go theorems are usually 
proved within the context of some axiomatized formal system which corresponds 
to a theoretical description of the natural system under study. However, no such 
axiomatized theoretical description exists in psychology or the philosophy of 
mind. It is therefore necessary to adopt a more indirect approach.

To perform any sort of mathematical or logical reasoning, it is necessary to 
make the assumption that we as human beings are capable of doing so. Any 
system which incorporates the human brain’s capacity for logical inference, we 
shall call H. This leads to the following two assumptions:

Assumption 1: There exists a physical system M which supports the properties of H;

Assumption 2: H is in principle both sound and consistent.

“Sound in principle” simply means that if a system reasoning with H makes a 
mistake, there is no reason in principle why it should eventually not correct that 
mistake.3 H does not therefore condemn any system using it to fallacious logical 

2 Referred to as Principle F' in Reason (2016).
3 Another way of looking at this, which is perhaps strictly more accurate, is to assert that H is sound but 
that individual intelligent beings are noisy theorem-provers in H. That is to say, intelligent beings can prove 
theorems in H but are subject to random errors. However, such beings are not subject to systematic errors.
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reasoning which can never be corrected. In practice, the condition that H must 
support humanlike reasoning requires H to support at least a capacity for arith-
metic and classical modal inference. There may well be many different formal 
systems, with different sets of axioms and different rules of inference, which 
exhibit the necessary properties of H, or it may be that there is no such formal 
system. It is extremely important to emphasize at this point that H must not be 
assumed to be a formal system — H is simply the label we give to any system 
which supports a capacity for humanlike reasoning, regardless of whether or not 
it can be fully axiomatized.4 However since H is defined only implicitly, proofs 
in H cannot be given in the way they would be for formally specified systems. 
Such proofs must be presented instead in terms of the classical modal logic and 
arithmetic which supervene on H. For this reason the following proof must be 
presented in considerable detail, so that the validity of the proof is clear to the 
reader. The proof to be found in the following section can be regarded as an effec-
tive procedure for proving the Theorem A, which can be followed mechanically 
without any special ingenuity or insight; we shall examine in more detail exactly 
what is meant by an effective procedure in the final section of this paper.

A Rigorous Formulation of Caplain’s Proof

We are now in a position to present Caplain’s proof in a rigorous form. The 
proof will now be presented in a number of stages, and each milestone will be 
clearly identified and numbered. The reader is invited to consider the reasonable-
ness of each inference as it is presented. Should any reader find the accompanying 
profusion of Greek letters and other algebraic symbols somewhat bewildering, 
they may find it useful to examine the verbal summary of the proof in the follow-
ing section, in which these symbols do not appear. However, readers should be 
aware that the notation presented here is necessary for a rigorous demonstration 
of the proof.

It will be convenient to restrict our considerations to mental processes which 
can be represented as functions.5 We will define M to be some physical system, 
and φ to be some function which yields the correct answer to a YES/NO question. 
We shall begin with the simplest case in which all questions can be considered 
to refer to propositions which are either TRUE or UNTRUE. The function φ 
therefore represents the mapping:

4 Since H cannot be assumed to be a formal system, it is necessary to understand the concept of 
soundness in a similarly informal way. A deductive system (whether or not it is fully axiomatizable) 
can be regarded as sound just so long as it is impossible in that system to prove a false conclusion 
from true premises.
5 I use the term “function” here in its mathematical, or declarative sense, not in the imperative sense 
which is sometimes used in computer science. That is to say, a function is understood to be an 
abstract mapping between two sets, and not a specified operation to be applied to some datum input.
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TRUE → YES
UNTRUE → NO

where TRUE and UNTRUE are the possible truth-values of some proposition p. 
We shall call the range of this function the evidence state of p. So if T represents 
the truth-value of p, and K represents the evidence state of p, the mapping can be 
represented as:

K = φ(T)

We now have our first milestone:

Milestone 1: Any mental process which is equivalent to the process of correctly 
answering a YES/NO question satisfies the formal definition of a function of the 
form φ.

The equivalence covers mental processes which may not themselves be 
answers to YES/NO questions, but can be represented as such. For example, the 
mental process of thinking “X is true” is equivalent to the process of answering 
the YES/NO question “Is X true?” In general, any proposition whose truth value 
maps onto some given evidence state of M, can be represented as the answer to 
some given YES/NO question.

In a physical system M, an evidence state of some proposition p can be any 
state of M correlated with the correct truth-value for p, and the function φ will be 
performed by some physical process P, as is required by the Principle of Physical-
ism. This gives us a general format for mental processes in a physical system. If 
T is the truth value for some proposition p, and K is the corresponding evidence 
state for T, then:

K = O(P)

where O is the output of some physical process P. This is to say that if TRUE is the 
correct truth value for p, then M will evolve to state KT, and if TRUE is not the 
correct truth value for p, then M will evolve to some state nonKT. Thus P executes 
the mapping:

TRUE → KT

not TRUE → nonKT

where KT and nonKT are separate states of M. We shall call this mapping π.
It is possible that T is a physical state of M, and furthermore that T is the same 

physical state as K; KT however cannot be the same physical state as nonKT. Some 
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decision is therefore always required as to whether M evolves to KT or to nonKT. 
This decision, and the subsequent evolution of M, constitute the process P. This 
leads us to our second milestone:

Milestone 2: Any physical instantiation of a function in the form of φ can be 
expressed as a mapping in the form of π, which will be performed by some phys-
ical process P.

Now consider the mapping which does the reverse of π; that is, the mapping:

TRUE → nonKT

not TRUE → KT

a mapping which we shall call ρ. It is nonetheless clear that ρ has the same form 
as π, and by Milestone 2 there will be some physical process which performs it, 
which we shall call R. We shall express this as our next milestone:

Milestone 3: For every mapping of the form π performed by a physical process 
P, there will be some contradictory mapping of the form ρ and some physical 
process R which performs this.6

But if K represents the evidence state of some true proposition, how is M to 
ascertain whether the state K has been produced by P or by R? It clearly matters, 
because if K has been produced by P then KT will represent the answer YES to 
some question, but if K has been produced by R, then KT will represent the answer 
NO to that same question. To resolve this difficulty, it is clearly necessary for M to 
ascertain whether K has been produced by P or by R! 

Another way of looking at this is to say that P is an accurate instantiation of φ 
but that R is an inaccurate instantiation of φ. In this case KT will always represent 
the evidence state YES, but if K has been produced by P then K will be a correct 
evidence state, whereas if K has been produced by R then K will be an incorrect 
evidence state. This brings us to the notion of failure, which is always a necessary 
consideration when dealing with processes in the real world, as opposed to the 
idealized mathematical functions they perform. We can express this notion in 
terms of the following axiom:7

6 This can always be done by applying a logical NOT operator to the truth value before performing φ. 
Therefore if P exists, so does R.
7 It is convenient at this point to express the notion of failure as an axiom of H, but it is not strictly 
necessary. Later I shall show how it is possible to express the notion of failure without assuming the 
Axiom of Fallibility. In the meantime, the Axiom can be understood intuitively by imagining a bag 
full of pebbles, each of a different color: the Axiom asserts that if one were to take a pebble from the 
bag, one could have no way of ascertaining the color of the pebble without looking at it, or examining 
it in some way.
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Axiom of Fallibility: Given any arbitrarily selected physical process, whose prop-
erties have not been ascertained, it is impossible to be certain that this process will 
or will not perform some given function.

In other words, if we have a physical system M in which there exists some evidence 
state K, produced by some process which is supposed to instantiate a function of 
the form φ, it is impossible to be sure whether that state has been produced by 
the process P or by the process R without ascertaining any of the properties of the 
process. We might be able to deduce through logical deduction what that process 
should be, but we cannot through logical deduction alone deduce what that pro-
cess actually is in any given case. 

How could we ascertain the properties of this mysterious process? We could 
either examine the process directly, or we could examine the mapping performed 
by the process, which entails examining the states between which the mapping 
occurs. In the former case we could ask, for example, “Does this process have the 
properties of P or of R?” This is clearly equivalent to asking either the questions 
“Does this process have the properties of P?” and “Does this process have the 
properties of R?” These are clearly YES/NO questions and so by Milestone 1 can 
be expressed as functions of the form φ — let us call this particular function φ1. 
In the second case we could ask, for example, “Does this process map T on to K?” 
This is also clearly a YES/NO question and so is also expressible as a function of 
the form φ. Let us call this particular function φ2. 

By Milestone 2, any physical instantiation of these functions can be expressed 
as a mapping of the form π, which will be performed by some physical process. In 
either case call this process P'. By Milestone 3, there will exist for this mapping a 
corresponding mapping of the form ρ, which will be performed by some physical 
process we shall call R'.

From the Axiom of Fallibility it follows that one cannot determine if the actual 
physical process which instantiates φ1 or φ2 in the physical system M, is P' or R' (or 
indeed some completely different third process as yet unidentified) without ascer-
taining the properties of this actual process. But ascertaining the properties of an 
actual physical process (as opposed to an idealized one) is equivalent to a function 
of the form φ. And by the Principle of Physicalism, M can only perform functions 
of the form φ by means of some physical process. This leads to the follow- 
ing rather awkward state of affairs:

1. A physical system M can only perform some function of the form φ by means 
of some physical process;

2. M can only ascertain the correctness of some physical process by performing 
some function of the form φ.
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This is either circular or leads to an infinite regress. The nature of the infinite 
regress is easily demonstrated by examining the functions which need to be per-
formed. If the first function can be represented as: 

K0 = φ0(T0)

where K0 is the evidence state of some proposition p0 and T0 is the truth value 
of p0; then subsequent functions can be represented as:

Ki = φi(Ti)

where Ki and Ti are the evidence state and truth value respectively of some prop-
osition pi where pi is equivalent to answering the YES/NO question:

“Is the function which answers the question equivalent to p i – 1 correctly performed?”

Clearly the number of questions which would need to be answered in order to 
establish that any given φ-type function has been performed correctly is at least 
countably infinite.8 Let us now assume that there exists some countable infinite list 
L1 of processes, which can be put into a one-to-one correspondence with a list L2 
of φ-type functions, such that each φi is mapped onto the physical process which 
performs it. We can then construct a function φomega equivalent to the question “Is 
it not the case that every process in L1 is in fact a process of type R?” Clearly φomega 
cannot be on the list L2 since it is not a function of the form φi. Therefore the set 
of questions which would need to be answered in order to establish that any given 
φ-type function has been performed correctly is more than countably infinite, as is 
the set of physical processes needed to perform those functions. In fact for every 
set of functions, however large, which is in one-to-one correspondence with the 
physical processes which perform those functions, there will be some function 
φdiagonal equivalent to the question “Is it not the case that every process in that set 
has been performed by a process of type R?” which is not in that set.9 

The upshot of all this is that M can never establish with provable accuracy 
whether any of its processes is accurate or inaccurate, since establishing this 
requires a non-terminating sequence of processes.10 It does not yet follow, how-
ever, that M cannot arrive at the conclusion that all its processes are accurate. 
M might, indeed, be correct to conclude that all of its processes are accurate. 

8 In mathematics, the term “countably infinite” refers to infinite sets whose elements can be put into 
one-to-one correspondence with the natural numbers.
9 This is an example of what in mathematics is called the diagonal method.
10 It would strictly be more accurate to say that the accuracy of M cannot be proven in the logical 
system H.
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However, such a conclusion cannot be a logically valid theorem in H; there is no 
logically sound chain of reasoning in H by which M can show that any one of its 
processes is accurate. To put this in slightly less technical language, it is impossible 
to prove in H that any of M’s processes is accurate.

If this is not yet obvious, consider the following: we have established above a 
chain of reasoning which shows that any attempt by M to establish the accuracy 
of any of its processes logically implies an infinite regress. We have established 
this conclusion by means of our human capacity for logical reasoning; a capacity 
which we have labeled H. By Assumption 2, H is in principle sound and con-
sistent. If H is sound and consistent, then it cannot support a stable chain of 
reasoning which would lead to a conclusion inconsistent with other conclusions 
already established in H; that is to say, with other theorems in H.11 M might be 
able to derive a logically valid proof in some other system, say nonH, that some 
of its processes were accurate; but then by definition M could not be a human 
being.12 One can therefore say that the statement “M cannot prove the accuracy 
of any of its processes” is equivalent to a theorem in H. 

If at this point we invoke Assumption 1, then M itself can establish that none 
of its processes is provably accurate. Since M can reason according to the system 
H, M can prove any theorem that can be proven by a human being; this includes 
the proposition “M cannot prove the accuracy of any of its processes.” To express 
this in slightly less formal terms, we can say that if a human being, reasoning 
according to the principles of H, can show that M cannot establish the accuracy 
of any of its own processes, then M can do the same.

This is an extremely raw and primitive version of the proof we need, which 
applies only to propositions which are either categorically true or categorically 
untrue. In real life, we are often concerned with degrees of probability as much 
as simple truth or untruth. Often we will have to deal with questions where we 
simply do not know the answer; where the possible answers to some question will 
be YES, NO, and MAYBE. We can extend the formalism to include such questions 
by representing them in the form:

11 Since H is only sound and consistent in principle, it could temporarily support an invalid chain of 
reasoning inconsistent with other theorems in H. However, such a chain of reasoning would have to 
be unstable, by which I mean that H would also have to support a chain of reasoning showing this 
fallacious chain to be invalid. 
12 Such a system might, for example, contain axioms which simply assert that certain physical pro-
cesses are accurate. It would be necessary for such a system to be so constituted that these additional 
axioms did not lead to contradictions with other properties of the system; this would entail nonH 
abandoning certain axioms, such as the Axiom of Fallibility, and having different rules of inference 
from H. The rules of H, for example, allow M to ask the question “Is there any reason why these 
additional axioms should not be dropped?”
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“Can M be certain that some proposition p is certainly true?”

All questions of this type can be expressed as YES/NO questions, in which the 
MAYBE category simply collapses into the NO category. We can now encapsulate 
the reasoning in this section as a specific proof, which we shall call Proof A. This 
proof establishes that no physical system which possesses reasoning capacities equiv-
alent to those of a human being can correctly answer YES to the following question:

“Can M be certain that it is answering some given YES/NO question correctly?”

We can express this as our next milestone:

Milestone 4: For any suitably qualified physical system M (that is, one which is 
capable of human-level reasoning), and for any proposition equivalent to the 
answer to a YES/NO question, there can exist some physical process of type R 
which will answer that question inaccurately. Therefore any suitably qualified 
physical system can deduce that it can never be certain that its answer to any 
YES/NO question is correct.

This is an extremely general result and it is thus worthwhile checking for any 
possible flaws. The reader might, for example, consider that since Proof A applies 
only to physical systems, it might not apply to M if M is not certain that it is a physi-
cal system. We can deal with this by expressing Milestone 4 in a conditional fashion:

“If M is a physical system there can always exist some physical process of type R 
which will answer any given YES/NO question inaccurately.”

Clearly this statement is provable in H. In order to establish that Proof A certainly 
does not apply to M, M must be able to answer YES to the question:

“Can M be certain that M is not a physical system?”

We will call the proposition equivalent to this question p0. M can now ask the 
question p1:

“Is there some process R0 in M that would answer p0 incorrectly?”

Whatever the answer to p1, M can now ask the question p2:

“Is there some process R1 in M that would answer p1 incorrectly?”
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Clearly we find ourselves in another infinite regress. In fact, generally for any 
proposition pi which can be expressed as a YES/NO question, there will be some 
proposition p i + 1 of the form:

“Is there some process Ri in M that would answer pi incorrectly?”

Thus the sequence of questions which need to be answered in order to establish 
the truth of the proposition:

“M can be certain that it is not a physical system”

is non-terminating. Since M is in fact a physical system, each such question is 
equivalent to a φ-type function which must be performed by some physical pro-
cess, which means the sequence of such processes is also non-terminating. So 
long as M is in fact a physical system, it does not matter if M itself is not certain 
that it is a physical system.

Having established this, our first application of Proof A is to the question:

“Can M be certain that M is conscious?”

where this question is subject to Conditions 1 and 2 as described in the previous 
section. Proof A shows that no suitably qualified physical system can answer YES 
to this question. Since H is required to be consistent it therefore follows that no 
suitably qualified physical system can answer YES to the question “Can I be cer-
tain that I am conscious?” Any healthy, conscious human being should be able 
to answer YES to this question. Conscious human beings, therefore, cannot be 
exclusively physical systems.

It is important to note here that Proof A applies to all φ-type functions. It 
therefore applies to all functions which answer questions of the form: “Can I be 
certain that I am conscious?” since all such questions form a subset of φ-type 
functions. The importance of Conditions 1 and 2 now become apparent: it is irrel-
evant what “consciousness” is understood to mean, since regardless of what it is 
taken to mean, all questions referring to it must be answered by φ-type functions 
which are subject to Proof A. 

Before proceeding to the next section, we will now deal with the outstanding 
matter of the Axiom of Fallibility. The purpose of this axiom is to express the con-
cept of failure, by asserting that there is no way of establishing through purely logical 
means whether some particular physical process is working correctly or incorrectly. 
Some readers, however, and most especially philosophers, may be attracted to the 
idea of simply dropping this axiom. One can, however, deal with the notion of 
failure without expressing it explicitly as an axiom. Consider some function of the 
form φ which is performed by some physical process. M can now ask the question:
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“Is it certain that the process which was supposed to perform the function φ did 
not in fact perform a mapping of the form ρ?”

to which the answer must be YES. The process of answering this question is itself a 
function of the form φ — call this φ'. By the Principle of Physicalism, any physical 
system which has performed this function must have done so via some physical 
process. M can now ask the question:

“Is it certain that the process which was supposed to perform the function φ' did 
not in fact perform a mapping of the form ρ?”

to which the answer must be YES. Since the process of answering this question 
is also a function of the form φ, which we can call φ", it must by the Principle of 
Physicalism have been performed by some physical process. In fact, in general any 
function φi which is assumed to have been performed correctly implies the existence 
of another function φi + 1 which answers the question equivalent to that assumption. 
This implies a non-terminating sequence of functions and a corresponding non- 
terminating sequence of physical processes to perform them. There is, in other 
words, no escape from the infinite regress by abandoning the Axiom of Fallibility.

The Cartesian Lemma 

A special problem exists in the case of self-referential statements such as the 
question “Is it certain that I exist?” In such a case a system reasoning in H could 
get as far as Milestone 2 and then argue, along the lines of Descartes’ Cogito ergo 
sum, that it does not really matter if the physical process which subserves the 
answering of that question is accurate or not — the mere fact that such a physical 
process exists is enough to answer the question in the affirmative. If M is asking 
“Does M exist?” then M exists. Descartes’ Cogito can be represented in H as a 
syllogism of the form:

If I think then I am;
I think;
Therefore I am.

Substituting for terms, this becomes:

If M is asking “Does M exist?” then M exists;
M is asking “Does M exist?”;
Therefore M exists.
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However this syllogism requires M to establish that it is the case that M is asking 
“Does M exist?” By Milestone 1 of Proof A, this question entails a φ-type function.
This inference enables us to state the following principle:

Cartesian principle: In order to establish that M is asking some question, M must 
perform a φ-type function.

Since the process of establishing if M is asking “Does M exist?” implies a φ-type 
function, Proof A (including the Cartesian lemma) will apply to it, as before. This 
can be expressed as an intermediate milestone in Proof A.

Milestone 1a: No physical system capable of reasoning in H can be certain that it is 
performing any φ-type function without performing some other φ-type function.

This obviously generates a non-terminating sequence of φ-type functions, which 
implies a second intermediate milestone:

Milestone 1b: No physical system capable of reasoning in H can ever be certain 
that it is performing any φ-type function without performing an infinite sequence 
of φ-type functions.

By Milestone 2 from Proof A, any such sequence must be performed by some 
physical process or set of processes. Let us use the symbol S to refer the set of 
functions performed by some physical process P. We can now ask the question:

“Does P exist?”

Plainly if P does not exist then no function in S will actually be performed. We can 
construct a set S' which is in one-to-one correspondence with the set S, such that 
for every φ-type function in S which is actually performed, there is a correspond-
ing element 1 in S', and for every φ-type function in S which is not performed, 
there is a corresponding element 0 in S'. Using simple diagonal reasoning we can 
now construct a set S' in which every element is 0, from which it follows that every 
function in S maps on to an element 0 in S'. By Milestone 1 of Proof A, the ques-
tion “Does P exist?” can be represented as a φ-type function. We now consider 
whether this function is in the sequence S, given that it is logically possible for 
every element in S to map on to an element 0 of S' — in other words, it is math-
ematically possible that no function in S is actually performed. If the function 
implied by the question “Does P exist?” is in S, then it is logically possible that no 
such function has been performed. However if there is no such function in S, then 
no such function can have been performed by the process P, since S is precisely 
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that set of functions performed by P. Since this is true generally for any set S, no 
matter how large, we can state the following lemma:

Cartesian lemma: No physical system capable of reasoning in H can ever be certain 
that it has performed any φ-type function.

Some philosophers assert that the Cogito is not, in fact, a syllogism at all but a 
sort of intuition which should be expressed in the following form:

M is asking “Does M exist?” and therefore M exists.

However such an intuition still requires M to establish that it is the case that M is 
asking “Does M exist?” Once again, this entails a φ-type function to which Proof 
A will apply.

Verbal Summary of the Proof

Proof A has two important properties. Firstly, it is generalizable; it applies to 
any mapping of the form φ. Secondly, it is recursive; it shows that the question 
of whether any given φ-type function is performed correctly can itself be repre-
sented as a φ-type function, to which Proof A applies.13

We shall now summarize the proof given in the last section in a somewhat more 
accessible, verbal form. In doing so we shall illustrate the properties of general-
ity and recursiveness, and show how these can be used to deal with the apparent 
objections to the proof which have been raised informally in correspondence to the 
author. It will be useful to base our verbal summary on the notion of evidence; how-
ever, we shall ignore all considerations about the nature of evidence and instead 
operationalize the function of evidence as a sequence of YES/NO questions. That 
is, if M has evidence that some proposition is true, then it is the function of that 
evidence to answer the question “Is this proposition certainly true?” with either a 
YES or a NO. This function we shall refer to as the evidence function, which relates 
the presence or absence of some evidence to the evidence state K of some proposi-
tion. If we define a state E so that E is 1 when some evidence exists, and E is 0 when 
that evidence does not exist, then the evidence function relates E to K as follows:

If E = 1 then K = YES
If E = 0 then K = NO

13 These properties of generality and recursiveness are explicit in the structure of Proof A, whereas 
in Argument A from the author’s previous paper (Reason, 2016) they are not. This can be seen most 
clearly by comparing the structure of Argument A with the Gemini couplet at the end of this section. 
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We shall assume that the evidence for some proposition is always perfectly cor-
related with the truth value of that proposition (since it is trivially obvious that 
evidence which is not so correlated cannot support certainty).

By the Principle of Physicalism, any evidence function in M must be per-
formed by a process which supervenes on some physical process or other. Since 
we have so far ascertained nothing about this process, we shall call it X.

Philosophers, and most particularly epistemologists, traditionally use pos-
sible worlds semantics to describe conditions of possibility and necessity (see, 
for example, Kripke, 1963). For convenience we shall adhere to this convention 
henceforth; if some proposition is possibly true, we shall express this by saying 
there exists some possible world in which that proposition is true. We shall refer 
to a possible world as epistemically available to M if M cannot rule out the possi-
bility that M exists in such a world, given the evidence currently available to M. 
We shall say that M is certain of some proposition if M can correctly decide that 
there is no possible world epistemically available to M, in which the evidence state 
which corresponds to the truth of that proposition is itself incorrect.

We shall express the first part of our proof as the following logical argument, 
which we shall call Castor:

It follows from the Principle of Physicalism that any evidence function must 
supervene on some objectively real process X. Since X is an objectively real pro-
cess it cannot be guaranteed a priori to be a correct instantiation of any function. 
We shall say that X fails on any occasion on which it does not correctly map some 
element from the domain of the function to its range. If X fails than its output will 
be an incorrect evidence state.

How can M be certain that the evidence state K is correct — that is, that the 
mapping from E to K has been correctly performed? Only by ruling out the 
possibility that X has failed. In other words, there must be no possible world epis-
temically available to M in which X has failed. The question of whether X has 
failed can be represented as the question “Is it certainly the case that X has not 
failed?” The process of answering this question is itself equivalent to a new evi-
dence function.

This argument is general — it applies to any evidence function. We can express 
this as the second part of our proof, which we shall call Pollux:

Castor has generality — that is, it applies to any evidence function. Therefore 
Castor can be applied recursively to the new evidence function generated by 
Castor. This will generate a third evidence function, to which Castor can be applied 
recursively yet again. Indeed each time Castor is applied to any evidence func-
tion, it will generate another evidence function to which Castor can be applied. 
Therefore the correctness of any objectively real process X cannot be ascertained 
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without performing a non-terminating sequence of functions, each of which (by 
the Principle of Physicalism) must be performed by some objectively real process.

Castor and Pollux together are equivalent to the Proof A given in the pre-
vious section. By splitting the proof into two sections in this way, the reader 
can clearly see how Proof A exhibits the two useful properties of generality and 
recursiveness. Castor establishes generality; Pollux shows that Castor can be 
applied recursively.

The foregoing tells us that M can never guarantee its own correctness when 
evaluating the truth of any proposition. However, this result has not been proven 
by M, but by us, the author and readers of this paper. It has been proven in 
whatever logical system or systems underly our reasoning processes, which we 
must assume are sound in principle. As in the previous section, let us call this 
system H. However Assumption 1 allows M to “inherit” H, as it were, and so to 
prove Proof A for itself. This reasoning also allows us to disregard the detailed 
character of H itself, since these details effectively cancel out. The reader’s under-
standing of Proof A can effectively be regarded as a derivation of Proof A in the 
logical system H.

We shall now express the outcome of Proof A as a theorem, which we will call 
Theorem A:

No suitably qualified physical system can exhibit the property of self-certainty, 
and in any system which exhibits self-certainty, the process which subserves 
self-certainty cannot depend on any objectively real process.

Readers should note that Proof A is a proof of exactly this theorem, and not any 
other. Some readers of my previous paper have been tempted to paraphrase this 
theorem into a generic and rather ambiguous statement about the epistemology of 
consciousness, and then to express objections based on the resulting ambiguities. 
However, a theoretical proof is a proof of a specific, well-defined proposition, 
derived from a specific set of assumptions according to clear rules of inference. In 
this respect a theoretical proof is quite different from a philosophical argument.

Proof A can be expressed as a couplet of statements, as follows. For any suitably 
qualified physical system:

1. By the Principle of Physicalism, any evidence function must be performed by 
some physical process;

2. By the Axiom of Fallibility, the correctness of any physical process must be 
determined by some evidence function.
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All philosophical objections to Proof A can be dealt with by applying this Gemini 
couplet. We shall examine some of these objections in the following section.

Discussion

The reader may well now be wondering, if Proof A is as generalizable as it 
appears to be, why it does not simply apply to all processes, whether physical or not. 
What sort of characteristic could possibly differentiate physical processes, which are 
subject to Proof A, from non-physical processes, which are not subject to Proof A?

The answer is that physical processes are defined as being objectively real — 
that is, they are assumed to have properties which exist independently of the 
subjective states which record the values of those properties. Therefore if we 
assume a φ-type function performed by some objectively real process X, there 
will be an objectively real fact about whether X is a process of type P, or a process 
of type R. The infinite regress, in the form of the non-terminating sequence of 
processes generated by Proof A, arises from the need to identify exactly what 
this objective property is. No such difficulty arises if no objectively real process 
exists, since there is then no objective property to be identified. The consequence 
of this, however, is that whatever process performs the φ-type function equiva-
lent to self-certainty, this process cannot depend on any objectively real process 
— it cannot, in other words, depend on any process which is external to human 
consciousness. Another way of looking at this is to say that any process which 
performs self-certainty must be subjectively real but not objectively real.

Theorem A itself shows only that self-certainty is impossible in any physical 
system. In order to apply this to the mind–body problem we need to make a fur-
ther assumption, which is that self-certainty is in fact possible for human beings. 
This is by its nature an empirical question. Some will regard it as intuitively obvi-
ous that human beings are capable of self-certainty, given that self-certainty does 
not require us to make any assumptions about the nature of consciousness or the 
properties of conscious states. This is especially the case if Proof A includes the 
Cartesian lemma, since the Cartesian lemma shows that if human beings were 
physical systems, we could never be certain that we were not in fact dead (in the 
sense of completely non-existent, as opposed to preserved in some sort of virtual 
reality afterlife). To the best of my knowledge, no philosopher or cognitive scien-
tist has been prepared to endorse such a proposition.

For any readers who are prepared to consider such an extreme case, how-
ever, there is a clear empirical prediction which can be made. Theorem A implies 
that self-certainty will entail a violation of the conservation of energy (as was 
explained in Reason, 2016). We can express this violation as an inequality between 
the energy liberated within a physical system and the energy dissipated by that 
system. The difference between energy liberated and energy dissipated is denoted 
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by the Greek letter χ (Reason, 2016). This inequality could in principle be detected 
experimentally; such a topic is however beyond the scope of this paper.

Let us now examine some common objections which have been raised against 
Theorem A and its implications. One objection is that conscious entities do not 
need to calculate or prove that they are conscious, but can in some way simply 
“ascertain” it. The mistake here is to assume that physical systems must necessarily 
have the same properties as conscious human beings. Any such “ascertaining” can 
still be represented as an evidence function, and if such an evidence function is 
performed by some physical process X (as is required by the Principle of Physi-
calism), then Proof A will apply to it. Readers should be careful not to attribute 
unconditionally to physical systems the properties of their own consciousness. 
Proof A applies generally to any system capable of reasoning in H, if both the 
Principle of Physicalism and the Axiom of Fallibility are assumed.

A further objection which has been made frequently to me is that it would be 
a trivial matter to program a machine to answer “Yes” whenever the question “Are 
you certainly conscious?” was asked. Of course this is true, but such a machine 
would, by definition, not be reasoning according to the rules of H. Therefore such 
an objection has no relevance to the Theorem A.

It has also been suggested that the correctness of X does not have to be estab-
lished for M to be certain that the evidence state K is correct, since in the possible 
world where X is correct, M may have access to other, different evidence from the 
possible world in which X fails.14 However this argument implicitly assumes another 
evidence function, and Proof A will apply recursively to any such function. One can 
express this evidence function in terms of the question “Does this other, different 
evidence demonstrate the truth of some proposition?” Since Proof A is generaliz-
able to all evidence functions, it will apply to this one. This is true regardless of what 
evidence M may have access to, since evaluating any such evidence is equivalent 
to the question “Does this evidence demonstrate the truth of some proposition?” 
and the function of answering such a question will always be subject to Proof A. 
No matter what evidence M may have access to, therefore, M can never be certain 
that the evidence function implied by that evidence has been correctly performed.

Some philosophers insist that any notion of certainty entailing an infinite 
sequence of propositions is epistemologically unacceptable and unnecessary, and 
that certainty requires only that M is certain of some proposition p. This would 
be a reasonable remark if the notion of certainty employed here were axiomatic, 
but for physical systems reasoning in H this is not the case. The requirement for 
an infinite sequence of functions is in fact a therorem in H, the proof of which is 
implicit in Proof A.15 

14 I am indebted to David Chalmers (personal communication) for this objection, and also for the 
one in the subsequent paragraph.
15 I shall refer to this theorem as the certainty lemma in future work.
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This proof can be expressed explicitly as follows: we start by assuming that M 
is certain of some proposition p. By the Principle of Physicalism, the process of 
determining p must supervene on some physical process, say X. From the Axiom 
of Fallibility, M can deduce that X may be fallible. By Assumption 1, M can deduce 
that if X is fallible, then the evidence state for p may be incorrect, in which case 
M can deduce that M cannot be certain of p. Therefore to be certain of p, M must 
have the ability to determine that X is operating correctly. By the Principle of 
Physicalism, this ability must supervene on some physical process, say X*. But 
what process is X*? It cannot be X, since M relies on the process X* to ensure that 
X is operating correctly. X therefore depends on X*, not the other way round.

Therefore M must assume that X* is some new process X', which is different 
from X. But from the Axiom of Fallibility, M can deduce that X' may be fallible. 
Since M’s certainty of p depends on X, and M’s certainty of X depends on X', M 
must have some means of determining that X' is operating correctly. Let us call 
this process X**. But what process is X**? It cannot be X', since establishing the 
correctness of X' depends on the correctness of X**. Neither can it be X, since 
establishing the correctness of X depends on the correctness of X'. Therefore 
we require some new process X" . . .  and so on ad infinitum. This leaves us with 
no choice but to discard the assumption which led to the regress — that is, the 
assumption that M is certain of p.

A rather more serious objection to the proof of Theorem A is that the rules of 
H by which the proof is derived are never explicitly defined. The proof is derived 
using the rules of arithmetic and classical logic, and we must therefore assume, 
firstly, that our ability as human beings to use these rules is sound, and secondly, 
that our judgement that these rules are the correct ones to apply in this situation 
is also sound. This second judgement may be impossible to formalize. Somehow, 
H must allow us (and any system which reasons like us) to decide that it is clas-
sical logic, rather than, say, some paraconsistent or quantum logic, which is the 
correct logic to use in this case. The problem here is that it is impossible to say 
whether or not H is fully axiomatizable. If H can be fully axiomatized, then any 
valid informal proof in H will also have a valid formal derivation in H. The sig-
nificance of this is that mathematical results are usually proved informally, to a 
standard of rigor which is demanding but nonetheless subjective. It is assumed 
that any valid informal proof will have a valid formal derivation in some axio- 
matized system, and this derivation can in principle be found by some purely 
mechanical process.

There are two difficulties which arise here. The first is that even if H is fully 
axiomatizable, we do not know what the correct axiomatization of H actually is. 
There is therefore no way of generating a formal derivation for any valid informal 
proof in H. We can however say that if H is fully axiomatizable, there will definitely 
exist some formal definition for any valid informal proof in H. It does not matter 
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that we cannot say what this derivation is. If we can be satisfied with the validity 
of the informal proof, we can guarantee that a formal derivation of that proof is 
possible (provided H is fully axiomatizable). 

It is in fact extremely rare in mathematics to require the derivation of a proof 
to be specified as a detailed derivation within some fully axiomatized system. Our 
ability as human beings to understand arithmetic, for example, also depends on 
the properties of H. It is similarly impossible to say that our ability to do arithme-
tic can be fully axiomatized, or, if it can, what that axiomatization is; but this does 
not prevent us from doing arithmetic, or from using arithmetic in mathematical 
proofs. One way of understanding this notion of an informal proof a little more 
clearly is to express it in terms of effective procedure. In computational theory, an 
effective procedure is any procedure which a human mathematician can use to 
compute some function on the natural numbers entirely mechanically — that is to 
say, by following a finite sequence of instructions by rote. An effective procedure 
requires only a pencil and an unlimited supply of paper, and no deep mathemat-
ical intuition or understanding. 

The notion of an effective procedure is impossible to formalize. It is impossi-
ble to be sure that what appears to be a mechanical procedure to human beings 
is really a mechanical procedure in a deeper sense. For example, consider the 
problem of counting the sheep in a field. There is an obvious effective procedure 
for doing this — simply count the sheep one at a time until one arrives at the 
total. This is a purely mechanical, rote procedure for human beings, which leads 
one to suspect that it could be readily automated. Unfortunately, to count sheep, 
one first has to be able to recognize a sheep. This is a trivial problem for a human 
being, but a decidedly non-trivial problem for any automated pattern-recognition 
system. What appears on the surface to be a simply mechanical procedure, there-
fore, turns out not to be so simply mechanical on deeper investigation. 

Despite this difficulty, there exists a widespread assumption in computational 
theory that all effective procedures are, indeed, capable of being automated. This 
assumption is known as the Church–Turing thesis. Here is one common formu-
lation of this thesis:

Any effective procedure is Turing computable.

A procedure is Turing computable if it can be computed by some Turing machine. 
But we can broaden the concept of an effective procedure to include methods for 
proving conclusions using classical logic. An effective procedure for proving some 
theorem can therefore be defined as any method which allows a human being 
to prove that theorem by rote following of instructions, without requiring deep 
mathematical understanding or insight.
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Since Turing machines can be regarded as equivalent to formal systems, we 
can express the Church–Turing thesis with respect to these sorts of effective pro-
cedures as follows:

Any effective procedure for proving some result has a derivation in an appropriate 
formal system.

One should note in passing that any effective procedure for proving some 
result must be a valid proof of that result. If we now assume that the problem of 
which formal system is appropriate in each case is itself effectively decidable, we 
can state the following principle, which we can call the Modified Church–Turing 
thesis or MCT:

Any effective deductive system is fully axiomatizable.

It is probably safe to say that most mathematicians do not worry about this 
very much, but to the extent that they worry about it at all, they implicitly assume 
the MCT is correct. If the MCT is correct, it still does not follow that H will be 
fully axiomatizable, since H may contain proofs that are not effectively describ-
able. But even if we overlook this, the MCT seems to me to involve a considerable 
leap of faith. While it may be true, I for one am not prepared to take it on trust. 
Therefore I have neither assumed nor denied the MCT in proving the Theorem 
A. Readers should be aware, however, that the assumption that any valid informal 
proof can be formalized is in fact a version of the Church–Turing thesis, and this 
thesis is intrinsically unprovable.

A second difficulty arises if there is in fact no axiomatization of H. In this case, 
clearly, there might be no formal derivation for any proof in H. This extreme 
situation is in fact not very plausible — a more likely state of affairs would be 
if there were multiple axiomatizations which were contextual properties of H.16 
In this case there would exist separate formal systems each capable of proving 
certain sets of theorems provable in H, but no single formal system which could 
prove every theorem provable in H. In other words, the problem of which formal 
system to use in any given case would be formally undecidable. (It might still be 
effectively decidable, or perhaps decidable by means which cannot reasonably be 
described as effective.)

The conjecture that H is not fully axiomatizable is now known as the Lucas–
Penrose thesis (Lucas, 1961; Penrose, 1989, 1994), and examination of this thesis 
is beyond the scope of this paper. The obvious consequence of this thesis is that 
it would entail some completely new way of understanding what it means for an 

16 A contextual property is a property whose value depends on the context in which it is observed 
or measured.
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informal proof to be valid — whether this means that some effective proofs have 
no formal derivation, or that some results provable in H are not proved by effec-
tive procedures. In my proof of Theorem A I have neither assumed nor denied the 
Lucas–Penrose thesis; but it seems apparent that if human beings are indeed capa-
ble of self-certainty, they cannot perform this operation by means of any effective 
procedure. It is difficult to avoid the conclusion, therefore, that self-certainty in 
human beings would necessarily entail the Lucas–Penrose thesis.

Let us now turn to the question of what, specifically, constitutes humanlike 
reasoning. Examination of both Proof A and the proof of the certainty lemma 
above shows that in order to derive either proof a deductive system will need to 
include the following:

1. A capacity for epistemic modal reasoning, which is to say reasoning about the 
concepts of possibility and certainty;

2. A capacity for reasoning using classical logic;

3. A capacity for reasoning arithmetically.

Both Proof A and the certainty lemma involve primarily classical modal rea-
soning, but the final step involving the deduction of a non-terminating sequence 
requires arithmetic induction. A fully formal derivation of either Proof A or the 
certainty lemma would, however, require some means of encoding concepts such 
as “objectively real” and “physical existence.” In the absence of any guarantee that 
such formal encodings are possible, I have opted for the simpler, rough-and-ready 
stipulation that a system capable of humanlike reasoning should be capable of 
following any procedure which human beings would regard as an effective proce-
dure or mechanical algorithm. For a more detailed examination of the difficulties 
involved in relating informal proofs to formal proofs see Tanswell (2015).

A brief mention must be made of two alternative philosophical approaches 
which some people appear to believe constitute loopholes in Proof A. The first is 
coherentism — the doctrine that although individual processes may not be reli-
able, a large ensemble of processes together might be. This is obviously vulnerable 
to applying Proof A simultaneously to every process in the ensemble. Alterna-
tively, the ensemble can simply be treated as a single process. More fundamentally, 
however, coherentism cannot be proven to be true; it must therefore be assumed 
to be true, which entails adding another axiom to H. Since the rules of H must 
allow M to ask the question “Is there any reason why this axiom should not be 
dropped?” and since the answer to this question is by definition NO, coherentism 
cannot establish absolute certainty.

The second philosophical approach which requires some mention is consti-
tutivism (Shoemaker, 1990). The key principle here is that the evidence state for 
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the question “Am I certainly conscious?” is a physical state which overlaps wholly 
or partly with the physical basis of consciousness itself. This idea was dealt with 
briefly in Reason (2016); the problem here is that, while self-certainty might be 
allowable if constitutivism is true, the process of determining if constitutivism is 
true can itself be represented as an evidence function, to which Proof A will of 
course apply. More specifically, for constitutivism to work, M must (by the rules of 
H) be able to answer YES to the question “Is the evidence state for consciousness 
physically identical with consciousness itself?” This question clearly implies an 
evidence function, to which Proof A applies. 
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