
© 2021 The Institute of Mind and Behavior, Inc.
The Journal of Mind and Behavior
Winter 2021, Volume 42, Number 1
Pages 33–52
ISSN 0271–0137

33

Cognitive Science Models:  
An Aristotelian–Thomistic Appraisal
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Cognitive science models emerged in the 1950s with the advent of computers and today 
have three versions: classical, connectionist, and embodiment (see Dawson, 2013 for an 
extensive review). Classical and connectionist models focus on the brain as explanatory 
of all cognitive phenomena but go further to claim that these cognitive phenomena can be 
replicated by computers, a field now labeled Artificial Intelligence. This essay will explore 
the claims of the classical and connectionist models and their strengths and weaknesses. I 
introduce the classical realism of Aristotle and Aquinas (the A–T model) and argue that 
the A–T model can incorporate classical and connectionist theory and findings, solve most 
of the weaknesses of both models, and add better causative explanations of higher cogni-
tive phenomena, such as concept formation and thought. The presentation ends with a 
brief discussion of implications for cognitive psychology.
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The roots of cognitive science stretch back to the post Cartesian idea that it 
might be possible to construct machines capable of human intellectual behavior; 
and the advent of computers in the 1950s solidified this conviction: machines 
could replicate human cognition. Over time, this approach became known as 
Classical Cognitive Science and was founded on the view that cognition, both 
human and animal, is computation; computation that can be produced by com-
puters. Critics of this classical approach emerged to propose a theoretical model 
of cognitive science known as Connectionist Cognitive Science. This model con-
tinued to assert that cognition is a computational form of information processing 
but claimed that cognition is best explained by brain-based neuronal networks. 
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However, the connectionist model continued to claim that computers could 
model the brain. Most recently, a third model, known as Embodied Cognitive 
Science, has emerged. This model has abandoned attempts to explain cognition 
either by the AI model or the connectionist model and asserts that cognition 
is best understood as an agent’s material body sensing and acting in the world 
(see Dawson, 2013 for an extensive review). However, the embodied model still 
sees cognition as computational, and was developed via work in cybernetics and 
robotics. One of the key characteristics of computational accounts is the ability to 
abstract away from the physical nature of the device doing the computing (and 
hence, both classic AI and connectionist models are often implemented on stan-
dard digital computers, for example).

Cognitive science, though multidisciplinary, served as the foundation of cog-
nitive psychology. Recent texts (Dawson, 2013; Goldstein, 2019; Solso, MacLin, 
and MacLin, 2014) recognize this fact, although they also show that contempo-
rary cognitive psychology incorporates other models (e.g., Gestalt, neuroscience, 
social). This essay will focus specifically on the classical and connectionist cogni-
tive science models and consider four goals: (a) presentation of the major claims 
of the classical and connectionist models; (b) consideration of the strengths and 
weaknesses of each model; (c) an examination of the Aristotelian–Thomistic 
(A–T) philosophical position, known as Classical Realism, in relation to the clas-
sical and connectionist models; and (d) a brief consideration of the implications 
for cognitive psychology.

The Classical Model

Dawson (2013), in his extensive review, traces the metaphysical underpin-
nings of the classical model to Descartes. He points out that cognitive science 
rejected the mind–substance side of Cartesian dualism but committed fully to 
the material–substance position. Hence, cognitive science (and cognitive psy-
chology as its derivative) positions itself as a materialist monism and, therefore, 
must present causal explanations of all cognitive events, including sensation, 
perception, memory, and higher-order cognitive functions (thinking, reasoning, 
decision-making, reflecting, intentionality, and the like) based on materialist meta-
physics. Brains, human and animal, are material and are obvious candidates for a 
materialist, mechanistic explanation. However, classical cognitive science claimed 
something more radical, namely that machines, in and of themselves, could repli-
cate all human and animal cognitive events. Serious pursuit of this claim began as 
early as 1950 with the advent of the first computers, and early advocates asserted 
computers would soon demonstrate the ability to replicate all human cognition. 
In fact, the label “Artificial Intelligence” was coined by John McCarthy and became 
standard language after the now famous Summer Research Project on Artificial 
Intelligence held at Dartmouth in 1956 (see McCarthy, Minsky, Shannon, and 
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Rochester, 2006). Certainly, the accomplishments of AI from then to now are 
strikingly impressive.

In 1956, psychology was still locked in behaviorism and not interested in 
revisiting “the mind.” A recent cognitive psychology textbook (Goldstein, 2019) 
points out that the “cognitive revolution” in psychology was slow to develop and 
cites the publication of the first book devoted to cognitive psychology (Neisser, 
1967) as the recognized starting point. Neisser coined the term cognitive psy-
chology and adopted the computational information processing model as the 
best model for explaining and studying the human and animal mind. The clas-
sical information-processing computational model has become vastly complex 
(see Dawson, 2013, Chapter 3 for a detailed exposition) but retains its basic 
composition as described by Goldstein (2019): “Information is first received by 
an ‘input processor.’ It is then stored in a ‘memory unit’ before it is processed by 
an ‘arithmetic unit,’ which then creates the computer’s output” (p. 12). Though 
this description of a computer remains true, Dawson (2013) points out that 
cognitive science saw the digital computer at a deeper level, as the grounding 
for a mechanistic explanation of human and animal cognitive events.

The classical model emerged first and is described by Dawson (2013) as follows: 

The claim that cognition is computation, put in its modern form, is identical to 
the claim that cognition is information processing. Furthermore, classical cogni-
tive science views such information processing in a particular way: it is identical 
to that carried out by a physical symbol system, a device like a modern digital 
computer. As a result, classical cognitive science adopts the representational the-
ory of mind. It assumes the mind contains internal representations (i.e., symbolic 
expressions) that are in turn manipulated by rules or processes that are part of a 
mental logic or a (programming) language of thought. Further to this, a control 
mechanism must be proposed to explain how the cognitive system chooses what 
operation to carry out. (p. 122)

Two elements of this description of the classical model require unpacking, includ-
ing: (a) what constitutes an internal representation (as a symbolic expression) and 
(b) the nature of the control mechanism explaining choice.

Paul Thagard (2019) points out that mental representations are “analogous 
to computer data structures” and are composed of “logical propositions, rules, 
concepts, images and analogies” (p. 7) which are manipulated by computational 
information processing systems. Hence, the mental representation, at its most 
basic level, is a pattern of on/off (0s and 1s) electrical circuits, described by Dawson 
(2013) as symbolic structures having semantic content (expressions of meaning); 
a relationship to the external world, known as designation (Newell, 1980); and a 
capacity to generate output. This sequence, as it applies to higher-order cognition, 
has become known as the sense–think–act cycle (Pfeifer and Scheier, 1999). Phi-
losophers of mind (Dennett, 1978; Fodor, 1968) defend this conceptualization 
of the mental representation as composed of increasingly simple sub-functions, 
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finally decomposable into the yes/no functions of electrical circuits and, there-
fore, replicable by a machine. Dennett (1978) has described this process thusly: 
“One discharges fancy homunculi from one’s scheme by organizing armies of 
such idiots to do the work” (p. 124).

What of the control mechanism explaining choice? Russell and Norvig (2009) 
describe AI generally as a field devoted to building intelligent agents. At its most 
basic level, the agent receives environmental input via sensors, then “chooses” 
action as dictated by the programmed condition–action rules, then produces an 
action which is delivered to the environment. This theoretical model, developed 
by Brooks (1991), consists of five levels, with each level adding more internal 
processes (Critic, Learning Element, Problem Generator, Performance Element, 
Communication) until reaching human capacity. At levels II and III computers 
can “think” ahead to future steps in proscribed environments that include clearly 
defined rules (e.g., win chess competitions) and, if loaded with declarative knowl-
edge, can perform deductions to reach environmental goals (win at Jeopardy). 
Computers operate according to condition–action rules (choice rules) provided 
by external programming; however, more current AI involves computers pro-
grammed with simple learning rules which come to rely on programming not 
directly built in by programmers.

Strengths and Weaknesses of the Classical Model

A major, and perhaps obvious, strength of the classical model is that it broke the 
grip behaviorism had on psychology and reintroduced “the black box” into theory 
and research. A few of these advances in cognitive psychology are the following:

1. Perception and attention: perceptual scan (Cattell, 1986); iconic storage 
(Neisser, 1967); sensation and perception (Broadbent, 1958); visual attention and 
perception (Treisman, 1988).

2. Memory: long-term memory models (Shiffrin and Atkinson, 1969); work-
ing memory (Baddley, 1986); episodic and semantic memory (Tulving and 
Donaldson, 1972).

3. Higher-order cognition: ability to “plan ahead” as in chess (Bringsjord 
and Govindarajulu, 2020,p. 4) or answer informational questions as in Jeopardy 
(Strzalkowski and Harabagiu, 2006); development of planning algorithms 
(Bringsjord and Govindarajulu, 2020, p. 8); development of analogy solving 
algorithms (Bringsjord, 2011); higher-order cognitive models of mind, such as 
Theory–Theory (Gopnik and Meltzoff, 1997).

Over time, the various disciplines came to recognize difficulties with the basic 
claim of the classical model, namely that all human and animal cognitive phe-
nomena could be produced by computers. Much of this criticism originated from 
philosophers but also came from experimental results pointing toward issues with 
the model. Some of the more prominent difficulties, stated briefly, are as follows:
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1. Intentionality. The symbols incorporated in computer information process-
ing must relate to the external world. This is known in the classical model as the 
problem of representation (Cummings, 1989) or the symbol grounding problem 
(Harnad, 1990). Dawson (2013) points out that the classical model has not solved 
intentionality but he does assert that a solution exists: “The physical symbol 
system hypothesis does not propose a solution, but merely assumes that such a 
solution exists. This assumption is plausible to the extent that computers serve 
as existence proofs that designation is possible” (p. 8). This argument appears to 
claim that the success of computer replication of human cognitive events proves 
that there must be a solution. Many critics of the classical model see this argument 
as simply begging the question.

2. The logicism hypothesis. The classical model claims that thinking occurs by 
performing logical operations, operations that are identical to information pro-
cessing by computers. However, a number of studies have shown that humans 
often do not think according to logical principles (Hastie, 2000). Hence, the issue 
is, if human thinking is identical to logical operations, how would humans ever 
think illogically? Of course, there have been attempts to solve this problem but 
not one has fully succeeded.

3. Computer vs. brain. Connectionist critics point out that the machine claim 
of the classical model must eventually match mechanisms in the human (and 
animal) brain. Connectionists assert that the match fails. For example, computers 
have few very fast components involved in information processing; brains have 
many (neurons) that process at much slower speeds (von Neumann, 1958).

4. Semantics (meaning) and qualia. Classical theory claims that the symbols 
manipulated by computers also contain meaning. As seen above, some philoso-
phers of mind (Dennett, 1978) claim that meaning is assembled from primitive 
elements, themselves having no meaning. Many have challenged this claim (Rob-
inson, 2008; Searle, 1984). Additionally, property dualists, such as Chalmers 
(1996), have asserted that qualia, defined as subjective experiences unique to each 
individual, cannot emerge from either a machine or a brain.

5. The Chinese Room. Proof of the central claim of the classical theory has been 
divided into weak and strong. The weak claim, devised by Turing (1950), is that 
the central assertion of the classical model could be established if a human listener 
cannot distinguish a message presented by another human versus a computer. This 
proof, long accepted by many in the AI community, has been criticized as too weak 
(Searle, 1997). In their recent review of AI, Bringsjord and Govindarajulu (2020) 
characterized the strong equivalence approach thusly: “‘Strong” AI seeks to create 
artificial persons that have all the mental powers we have, including phenomenal 
consciousness” (p. 35). Searle (1984) opposed both strong and weak equivalence 
in a thought experiment known famously as the Chinese Room argument. Briefly 
(and the reader is encouraged to examine this argument in full), Searle’s argument 
is as follows: fluent Chinese speakers create meaningful messages in Chinese that 
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are then entered into a box. In the box is a non-Chinese speaker who does not 
understand the messages at all but who has a codebook showing how the mes-
sages should be outputted to Chinese speakers outside the box who will receive 
the messages and understand their meaning. According to Searle, this is all that a 
computer does. This argument has never been successfully defeated.

Dawson (2013) states that the classical model is still preeminent in cognitive 
science and this claim is no doubt true considering all of the disciplines involved 
in cognitive theory and research, particularly applied to AI. However, because of 
the critiques cited above, many occurring quite early in the history of the classical 
model, the connectionist model arose as an alternative.

The Connectionist Model

Buckner and Garson (2019) describe the connectionist model as follows: 

Connectionism is a movement in cognitive science that hopes to explain intel-
lectual abilities using artificial neural networks (also known as “neural networks” 
or “neural nets”). Neural networks are simplified models of the brain composed 
of large numbers of units (the analogs of neurons) together with weights that 
measure the strength of connections between these units. These weights simulate 
the effect of the synapses that link one neuron to another. Experiments on models 
of this kind have demonstrated an ability to learn such skills as face recognition, 
reading, and the detection of simple grammatical structure. (p. 1)

They point out that these networks consist of many units joined together to pro-
duce patterns of connections. These include input units receiving information to 
be processed; output units which generate actions/results; and hidden units which 
occur between the input and output units. As related to the brain analogy, Buckner 
and Gerson (2019) say this, “If a neural net were to model the whole human ner-
vous system, the input units would be analogous to the sensory neurons, the output 
units to the motor neurons, and the hidden units to all other neurons” (p. 1).

The weights mentioned above occur first at the input level and have activa-
tion values related to features of the environment. These are essentially numerous 
weighted stimuli transmitted to the hidden units (analogous to neuronal struc-
tures). The hidden unit generates its own activation weight as a signal that passes 
on to other hidden units or to output units. Activation patterns in the neural net-
work relate directly to the weighted strength of connections between all units. The 
connectionist model attempts to use computers to simulate the brain by building 
computer-based “neural networks” that can learn.

For example, using a procedure called backpropagation, computers can be 
trained to distinguish male and female faces. The input training set would have 
many faces of males and females broken down into many variables at the pixel 
level, such as shape and other male–female facial characteristics. The output unit 
consists of two categories, male and female faces. Input units are compared to 
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output facial categories and the input unit’s weights are adjusted until features 
matching the female are increased and the male features decreased. This pro-
cedure continues until correct category selection occurs at the output unit. This 
process generally takes numerous rounds (hundreds) of input weight adjustment 
learning. This learning model has been used for many tasks which connection-
ists believe to be models of human cognition, including nets that read English 
text (Sejnowski and Rosenberg, 1987), handwriting recognition (Hofstadter and 
McGraw. 1995), as well as nets that recognize human voices and can type lan-
guage, and such.

The hidden units of computer simulated neural networks consist of layers and 
require a model to explain interactions between hidden units at more superfi-
cial levels and those at deeper layers, similar to neuronal structures in the brain. 
Technical advances have led to the newest iteration of connectionism, known as 
deep learning, in which learning occurs with many layers of nodes (hidden units) 
between input and output. Development of the graphic processing unit (GPU) 
has allowed large numbers of parallel processors with the computational power 
to train large networks (as many as five to several hundred). As stated by Buckner 
and Garson (2019), “The key is that patterns detected at a given layer may be 
used by the subsequent layers to repeatedly create more and more complex dis-
criminations” (p. 19). These advances have also improved computer simulation 
of learning to cope with “nuisance parameters,” variables which interfere with 
correct sorting decisions. This results in a system’s ability to detect “hidden” sim-
ilarities at deeper levels. Hence, deep learning has produced models appearing 
closer to human brain function.

As with the classical model, the connectionist model must account for repre-
sentation and meaning. Regarding representations, the connectionist model posits 
that each representation is “a pattern of activity across all units” with “no princi-
pled way to distinguish between simple and complex representations” (Buckner 
and Garson, 2019, p. 9). The units here are the hidden units that cluster together 
as the result of leaning, analogous to brain-based increases in synaptic densities 
that occur during human and animal learning. This process can be simulated, to a 
degree, by deep learning mechanisms. Hence, like the classical model, the connec-
tionist representation is a material entity, is manipulated according to information 
processing, and is not based on symbols but on clusters of hidden units.

Buckner and Garson (2019) state the following about how clustered brain 
states (the representations described above) could have meaning: “The idea is that 
similarities and differences between activation patterns along different dimen-
sions of neural activity record semantic information. So the similarity properties 
of neural activations provide intrinsic properties that determine meaning” (p. 
14). Representations, which carry these activation patterns, presumably derived 
from external environmental sources and assembled in the hidden units based on 
similarity, is the connectionist theory of meaning.
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Strengths and Weaknesses of the Connectionist Model

The connectionist model offers several advantages over the classical model. 
Some of these strengths are as follows:

1. The connectionist model manages the intentionality/symbol grounding 
problem of the classical model by incorporating, at least theoretically, the human 
(and animal) sensory and CNS biological structure. Following Locke, the con-
nectionist model asserts that cognition begins in the senses and the senses are 
directly connected to the externally experienced world. Of course, the connec-
tionist model claims that the biological model can be replicated by computer 
information processing that simulates brain-based neural networks and that 
claim is subject to challenge.

2. Being grounded, at least in theory, in the sensory–brain mechanism, the 
connectionist model can incorporate some findings from neuroscience. In fact, 
connectionists often cite neuroscience theory and findings as support for their 
model.

3. As mentioned above, connectionists solve both the speed of processing and 
the complexity of organization issues plaguing the classical model by asserting the 
neural network theory which connectionists view as grounded in the 100 billion 
neurons and two trillion synaptic interconnections of the “hidden units” of the 
human brain.

4. Formulations of higher-order cognition begin with concept formation, the 
basic building block for thinking, reasoning, planning, etc. Rogers and McClel-
land (2004) present an elaborate model depicting composition of the “concept of 
canary.” There are four levels: concept (canary as opposed to rose, sunfish, etc.); 
representation (the activation of units with varying connection weights described 
above) and of relation units (units indicating relationship such as is, is a, can, etc.); 
hidden units which further process the concept canary; and finally properties 
(consisting of abstract and highly abstract descriptors such as living thing, plant, 
pretty, yellow, wings, roots, etc. and their relations). This sort of structure, through 
a series of weighted interconnections, produces the concept of canary (as opposed 
to oak tree or bear) and is learned. Goldstein (2019) describes this learning as fol-
lows: “The answer to ‘a canary is a …’ is represented in the network by activation 
of the property units plus the pattern of activation of the network’s representations 
and hidden units. However, according to connectionism, a connectionist network 
has to be trained in order for a result to occur. This training involves adjusting the 
network’s connection weights” (p. 262). He goes on to describe how this might 
occur in young children. Once connectionism establishes an explanation for the 
formation of concepts, higher-order cognition (reasoning, planning, deciding, 
thinking, creativity and so forth) flows from use of concepts.

Despite the advantages noted above, connectionism also faces serious challenges, 
some of which are as follows:



ARISTOTELIAN–THOMISTIC REALISM AND COGNITIVE SCIENCE 41

1. Critics challenge both the classical and connectionist models regarding con-
sciousness and semantics. The issue regarding consciousness involves explaining 
how something entirely material, such as computers and the brain, can be con-
scious. A number of philosophers of mind challenge all or parts of this claim 
(Chalmers, 1996; Dreyfus, 1992; Feser, 2019, p. 442; Robinson, 2008; Searle, 1984, 
2014) and some defend the position that material reality can appear conscious 
but really is not. This position is known as eliminative materialism (Churchland, 
2007; Dennett, 1979).

2. Connectionist critics point out that backpropagation learning methods 
require very extensive repetitions to achieve weight adjustment in the network, 
whereas humans can learn from a single example. For instance, children can learn 
the name of a two-wheeled vehicle in one or two trials (Lake, Wojciech, Fergus, 
and Todd, 2015).

3. Deep learning has not solved the problem of constructing new abstractions 
above the level of input vocabulary (Bringsjord and Govindarajulu, 2020, p.13); the 
problem of generalization to inputs from outside the original training set (Zhang, 
Bengio, Hardt, and Recht, 2016); or the problem of supplying convincing explana-
tions of the mechanisms of deep learning related to “adversarial examples” which 
can “fool” other nets trained in the same manner (Goodfellow, Pouger–Abadie, 
Mirza, Xu, Wade–Farley, Ozair, Courville, and Bengio, 2014).

4. There have been challenges regarding the similarity between the connec-
tionist network model and the actual biological CNS, and Shimansky (2009) has 
argued that there is little neuroscience evidence to support important connec-
tionist learning rules.

5. Despite connectionism’s claim to solve the problem of grounding/intention-
ality, the model offers no direct relationship between the senses and CNS. In fact, 
inputs are arranged in a structured way by the person building the model. So, 
already, the model is working on “interpreted representations” coming from the 
programmer rather than raw sensory data from the environment.

In sum, the classical and connectionist models share a commitment to a 
materialist metaphysics and a general commitment to the view that informa-
tion processing underpins human and animal cognition. Both acknowledge 
that, ultimately, cognitive processing begins in the senses, is processed in the 
brain, and finishes with various forms of output (the sense–think–act sequence). 
Both models have strengths and weakness, some shared. However, the classical 
model appears more committed to demonstrating that, though the brain must be 
factored in at some point, cognition is entirely replicable by machine. The connec-
tionist model is more committed to showing that computers can operate like the 
brain, but the brain is central. Computers merely replicate the brain’s mechanisms.
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An Aristotelian–Thomistic (A–T) Appraisal

Dawson (2013) traces the metaphysical roots of classical cognitive science to 
the substance dualism of Descartes and points out that the formulators of the 
classical model rejected the rationalist, immaterial position and accepted the 
materialist position. He traces connectionist cognitive science to Locke’s empir-
icism, which was a reaction to Descartes’ rationalism. I propose the classical 
realism of Aristotle and Aquinas as a metaphysical alternative to the classical and 
connectionist models. However, before discussing the A–T cognitive model, we 
must start with the basics of A–T metaphysics because these principles underpin 
the A–T account of cognition. These principles are the hylomorphic theory, the 
theory of act and potency, and the A–T view of substance.

Aristotle’s general metaphysical theory claims that all reality can be explained 
by means of the four causes: efficient, material, formal, and final. The efficient 
cause is the agency generating a particular thing. The material cause is the stuff/
matter from which something is generated. The formal cause is that which orga-
nizes matter to have the structure and characteristics it has. The final cause is 
the purpose or endpoint of the object, its function. A classic example of the four 
causes is Aristotle’s commentary on sculpting a statue. The efficient cause is the 
sculptor and his sculpting; the material cause is the block of marble; the formal 
cause is the image to be sculpted, e.g., a statue of Hermes which specifies the “what 
it is” of the statue; and the final cause is the purpose, to create and exhibit art. The 
A–T analysis of human and animal cognition occurs within this framework.

The concepts of act and potency are also major metaphysical principles of the 
A–T model and go hand in hand with the casual principles presented above. A 
dictionary definition first: act is the intrinsic principle, which confers a definite 
perfection on a being, hence, a form. Potency is the capacity to be acted on or 
changed; the capacity to receive (a form), to be acted on, to be modified. An exam-
ple may help clarify these concepts. Even today, we say that an athlete seems to have 
the potential to be great but her potential needs to be perfected through hard and 
extensive training. Thus, the potential of the athlete is actuated as positive change 
caused by the training.

Another principle of the A–T theory is the distinction between substantial 
and accidental forms. Substantial form is essential to the thing and accidental 
form is a quality of (inhering in) the substantial form but is not essential to it. In 
the statue example, its substantial form would be that of a statue or a depiction of 
someone or something. Accidental forms are such qualities as color, height, type 
of material, and such. It is important to point out that the A–T model does posit 
a moderate form of dualism; however, this is not the full substance dualism of 
Descartes. Unlike with Descartes' view, the human being is fundamentally unified 
in the A–T account, which asserts that humans are one substance only but possess 
faculties or powers, the intellect and will, which are immaterial.
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The External Senses

Aristotle recognized five external senses and asserted that all knowledge begins 
in them. This claim immediately deals with the classical problem of grounding; 
humans and animals interact directly with the environment by means of the 
senses. The connectionist model presents somewhat less of an issue because con-
nectionists presuppose a sensory connection to the external world. The problem 
for them arises when they try to simulate this process via computer based infor-
mation processing.

Little will be said about the details of the physics, chemistry, anatomy, and 
neuroscience involved in external senses; these are givens. These factors explain 
“how” the external senses are “activated” and proceed into the brain for process-
ing. Two words here are important. The “how” indicates that physics, etc. explain 
the mechanisms activating each sense. The term “activated” indicates that these 
various (and different) stimuli move the sense organs from passive to active. This 
process is a way of describing the metaphysics of potency and act discussed above. 
An obvious example occurs when I shut my eyes. Reflected light ceases and I do 
not see; however, my eyes remain in potency to shift into act (activation) as soon 
as I open my eyes and stimulation commences again.

A second A–T principle of metaphysics is at work here, namely the four-cause 
analysis presented above. The physics, chemistry, anatomy, and neuroscience 
describe efficient causes involved in activating the senses. The principles of matter 
and form are also at play. Aristotle asserted that all material reality is a combina-
tion of matter and form, with matter being the capacity to receive a particular 
form. Applied to the senses, this metaphysical principle means that each sense 
organ must have the potential (potency) to receive a particular form in order to 
activate (to move it from potency to act). Hence, the eye’s material reality is con-
structed to receive a particular form of sensory stimulation. Once received, this 
combination results in the process of a particular instance of vision. It should be 
noted that the same sensory stimulation will not activate hearing. Though there 
is some overlap in sensory stimulation able to be “read” by each sense, in general 
each sense requires a particular combination of matter and form; the sense organ 
must have the capacity (material potency) to “read” the incoming “data.” In the 
A–T model, the final cause is the end or purpose of the sense: vision to see; touch 
to feel and so forth.

The last sentence contains some terms that could easily occur in a classical or 
connectionist description of the sense organs. This illustrates the point that, at this 
level of discussion, there is much overlap between the A–T model and the classi-
cal/connectionist models. The major differences occur at the metaphysical level of 
explanation. Casual analysis, especially efficient causal analysis of the mechanisms 
in interaction, is quite similar.
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The Internal Senses

Dawson (2013) discusses the idea of “reverse engineering” as used in AI. The 
process starts with outcomes, and engineers reconstruct the internal workings of 
a device from output inward. The ancient Greeks had their own version of reverse 
engineering, and Aristotle was the master of this process. His analysis of human 
behavior, without the benefit of psychological studies, imaging, or detailed neu-
roscience, led him to postulate “internal senses” involved in processing external 
sense input: the common sense, and the imagination (memory). Later medieval 
philosophers, Averros, Avicenna, and Aquinas, reformulated Aristotle to include 
four internal senses: the common sense, which receives and arranges all sense 
data; the imagination that combines and reassembles images; the estimative 
faculty, which gauges the dangerousness of the sensed object; and the memory, 
which retains the sensory level images or representations for later use. Shields 
(2003) points out that the A–T analysis of the internal senses flows from the hylo-
morphic theory and the Aristotelian theory of change from potency to act.

The internal senses are similar to the hypothetical constructs of modern psy-
chology. Psychological constructs have two properties, one referring to “entities” 
such as known brain structures and hypothesized “entity-like” processes discussed 
below, and a second referring to the function of the construct and its interaction 
with other constructs. As we will see, Aristotle and later commentators followed 
a similar line of reasoning.

The common sense receives and arranges all input from the senses. Aristotle 
and later commentators located the common sense, as a biological entity, in the 
brain and determined its functions to be (a) integration of the external senses; 
(b) discrimination between the separate senses according to their proper object, 
meaning visual to visual stimuli, auditory to sound stimuli, etc.; (c) unifying 
those separate sensations into a single sensory perception; and (d) modification 
of currently sensed objects by “sense memory” based on past experience with that 
object. In modern cognitive science and psychology, this is known as perceptual 
binding and there is a vast psychological and neuroscience literature devoted to 
explaining the mechanisms involved in producing perceptual binding. This liter-
ature involves studies of brain structures (entities) as well as studies of theoretical 
constructs and their interactions (functions) related to sensory integration. An 
example would be John’s (2002) hypothesized construct, described as perceptual 
frames with each sensory frame evaluated in the context of the previous frame 
and memory.

In terms of the relationship of the common sense to the classical model, it 
appears that the programmer, architecture, and algorithm provide the perceptual 
binding. As related to connectionism, presumably the “hidden elements” create 
the binding. However, both the classical model and connectionism focus on rec-
reating this cognitive event in machines; although, of the two, connectionism is 
more directly brain focused. In fact, in modern cognitive psychology texts, one 
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often finds connectionist oriented psychological topics followed by sections with 
labels like “Cognitive Neuroscience Support,” which cite direct investigation of the 
brain as supportive to psychological theories and findings. This pattern repeats 
across the other internal senses.

The imagination receives the perceptually bound sensation and performs 
subsequent operations, including (a) retaining and recalling sensation organized 
by perceptual binding; (b) in humans producing the ability to combine percepts 
never directly sensed to be imagined (a unicorn); and (c) most importantly, gen-
erating the phantasm. The phantasm is sensory image or representation that is the 
product of perceptual binding and combinations of previous sensory perceptions. 
Learning and recall enrich the phantasm, which becomes more complex over 
time and experience. Nevertheless, it should be noted that, in the A–T model, the 
phantasm is at the sensory level as opposed to the conceptual level.

Both the classical and connectionist models recognize that a construct, such 
as the imagination, occurs in the brains of humans and, to a lesser degree, in ani-
mals. To a certain degree, computers can simulate this assembly of data and can 
produce a collected data set (a representation) similar to the phantasm. Hence, the 
A–T model and the classical and connectionist models are compatible at this level.

Aristotle recognized that both humans and animals have memory, which 
stores phantasms but is not simply a static storehouse. Spalding, Stedman, Gagné, 
and Kostelecky (2019) describe A–T memory as follows:

It is important to remember that memory works in concert with all the other 
internal sense powers such that any phantasm might be stored, whether it is the 
more or less direct production of an external sensed object, or a combination of 
other sensory information from the common sense, or whether it is a phantasm 
(created by the common sense) of an imaginary thing. (p. 40)

Of course, memory has always been the central construct of the classical and 
connectionist models. In fact, both models assert that what is processed in 
information processing are sets of assembled data stored in RAM. Computer 
simulation of this process merely replicates what happens in the brain.

Little will be said about the estimative sense, except to note that “reverse 
engineering” makes it obvious that such a process exists. Perhaps a parallel to 
computer simulation occurs when defensive software in computers recognizes 
and fends off attacks by hackers.

At the levels of the external and internal senses, as noted in previous con-
siderations (Spalding et al., 2019; Stedman, 2013), the A–T model, the classical 
model, and the connectionist model overlap to a high degree. The vast psycho-
logical, classical, connectionist, and neuroscience literature can be interpreted as 
fleshing out details unavailable to Aristotle and later philosophers. At the level of 
philosophical analysis, the A–T model is compatible with the classical and con-
nectionist models, particularly in terms of analysis of efficient causal mechanisms.
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Finally, the A–T model addresses weakness of the classical and connectionist 
models at this level. First the classical model. As previously noted, the A–T model 
deals with the classical model’s problem of intentionality by grounding all cognitive 
phenomena in the external senses. The A–T model agrees with the connectionist 
view that the classical model fails to match up well with brain structure and pro-
cesses. The A–T model solves that problem by dealing with the entire CNS.

The A–T model also addresses issues with the connectionist model. The prob-
lem of backpropagation, the objection that humans learn without numerous 
repetitions, does not occur in the A–T model. First, the A–T model deals directly 
with human leaning, not machine learning. Second, the A–T model deals with 
the objection that deep learning does not create new abstractions by postulating 
a philosophical paradigm to explain all abstraction. More will be said about this 
process in the next section. Finally, controversy regarding the similarity between 
the connectionist computer-based paradigm and the biological CNS does not 
occur because the A–T model deals directly with the sensory-to-CNS pathway.

Higher-Order Cognition

Higher-order cognition encapsulates a number of cognitive events: concept 
formation, thinking, reasoning, problem solving, decision-making, logic, mean-
ing creation, theory of mind intelligence, and even consciousness. All of these 
cognitive phenomena start with concept formation and proceed from that base. In 
fact, the cognitive events can all be reduced to concepts and the relations between 
and among concepts; thus, we will consider only concept formation and reason-
ing. But first, how do the classical, connectionist, and A–T models account for 
these realities?

The classical account, as stated above, follows Thagard’s (2019) description 
of mental representations as “analogous to computer data structures” contain-
ing ”logical propositions, rules, concepts, images and analogies” (p. 7). These are 
arranged and rearranged by the computational processing system of the computer 
according to the classical model and, by analogy, in the brain. The classical account 
also claims that these representations carry meaning. Recall Dennet’s (1978) claim 
that these data structures start as yes/no “idiots” that somehow become realities 
with rules, concepts, logical propositions and such. Perhaps conceptual represen-
tations in the classical account are actually supplied by meaning makers outside 
the computer and passed into the computer “Chinese Room” style. This notion 
receives support from Russell and Norvig (2009) who note that machine learning 
has not progressed on the important problem of constructing new representations 
at levels of abstraction higher than the input vocabulary.

Once concepts are loaded, computers can manipulate them in thought-like 
ways. For example, once concepts are loaded, computers can perform feats of 
cognition, such as syllogistic reasoning, problem solving, and decision-making. 
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However, these cognitive events are limited in scope, in that input comes from 
abstract concepts developed by outsiders, are passed into programs that control 
processes of assembly, and then output occurs.

In their review, Bringsjord and Govindarajulu (2020) note that AI can muster 
some support for “weak” AI. Under the “weak” criterion, both classical and con-
nectionist models can pass the basic Turing test but not the total Turing test in 
which “a machine must muster more than linguistic indistinguishability: it must 
pass for a human in all behaviors — throwing a baseball, eating, teaching a class, 
etc.” (p. 35). Bringsjord and Govindarajlulu go on to assert that AI has not come 
close to meeting the “strong” criterion, that is, production of machines that have 
all the mental powers of humans.

The connectionist model describes concept formation as neural networks, 
based in the brain, but replicable in computer-based “neural networks” pro-
duced by learning. As pointed out earlier, connectionists claim specific neural 
networks become concept-like as repeated deep learning trials modify weights 
in the hidden units. Critiques of this conceptualization, presented earlier, will not 
be repeated here. I will present a description of how this learning, known as back 
propagation, occurs according to connectionist theory (Goldstein, 2019):

To explain the idea behind activation and back propagation, let’s consider a behav-
ioral example. A young child is watching a robin sitting on a bench, when suddenly 
the robin flies away. This simple observation, which strengthens the association 
between “robin” and “can fly,” would involve activation. But, if the child were to 
see a canary and say “robin,” the child’s parent might correct her and say “That is a 
canary” and “Robins have red breasts.” The information provided by the parent is 
similar to the idea of feedback provided by backpropagation. Thus, a child’s learn-
ing about concepts begins with little information and some incorrect ideas, which 
are slowly modified in response to observation of the environment and to feedback 
from others. Similarly, the connectionist networks’ learning about concepts begins 
with incorrect connection weights, which are slowly modified in response to error 
signals. In this way, the network learns that things that look like birds can fly, things 
that look like fish can swim, and things that look like trees are places where robins 
and other birds might perch. (p. 262)

Many psychological discussions of concept formation endorse this type of par-
adigm and present schematics that move from the particular canary to modules 
representing highly abstract concepts such as live, mammals, animals, man, 
energy, and such. A famous connectionist study (McClelland and Rogers, 2003) 
found that a computer, through backpropagation, could learn to differentiate daisy 
from canary after 250 trials and daisy, canary, and rose after 2,500 trials (one won-
ders how many trials it might take to differentiate energy vs. truth). This is in 
contrast to the previously cited study by Lake, Wojciech, Fergus, and Todd (2015) 
showing how children learn names of two-wheeled vehicles in one or a few trials. 
This critique, and others mentioned earlier, all cast doubt on the connectionist 
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model as a complete explanation of concept formation. However, these critiques 
cast doubt on the computer simulation portion of the connectionist model, and 
less so on its claims about brain function.

As with the classical model, reasoning within the connectionist model involves 
various manipulations of concepts, some highly abstract and some very partic-
ular relating to persons, places, or things. The classical syllogism illustrates this 
point: all men are mortal. John is a man. Therefore, John is mortal. The classical 
model views all of these components as “computer data structures,” loaded into 
the computer and manipulated. The model makes no distinction between the 
more abstract terms and the particular, John. The connectionist model regards 
all of these components as the products of learning, synaptic connections in the 
brain and deep learning structures in computer simulation of the brain. Unlike 
the classical model, the connectionist model does recognize differences in levels 
of abstraction, as in the canary example. The basic claim is that reasoning of all 
types assembles these abstractions (all men and mortal) and connects them with 
particulars (John) and other new and old abstractions (see Stedman, Hancock, 
Sweetman, 2009 for further discussion). Of course, both the abstractions (all men 
and mortal), the particular (John), and their connections are explained by the 
same processes as described above in the canary example.

The A–T model is a dualism; however, this is not the Cartesian dualism most 
psychologists and neuroscientists know. Feser (2005, 2009) refers to A–T dualism 
as hylomorphic dualism because it is founded on Aristotle’s principles: the four 
causes, substance, and act and potency. Whereas Descartes postulated a reality 
of two separate substances, mind and body, hylomorphic dualism asserts that 
humans have one unified substance composed of matter and form. Recall that 
form is that which makes something what it is, such as the statue of Hermes. 
According to the A–T model, the human form has special powers, the intellect 
and the will, which mark a distinction between animals and humans.

Aristotle examined the object or product of the human intellect and deduced 
that the intellect abstracts a universal concept from particulars presented in the 
phantasm. This universal concept is the sensory composite of matter and form 
held in the brain and described by Shields (2003) as like a blueprint, applicable 
to all particulars covered by the concept. For example, humans can experience a 
particular dog, elephant, and fish and, via the process of abstraction, can under-
stand that all fall under the universal concept, animal.

Reasoning, according to hylomorphic dualism, operates as an interplay 
between concepts, known by the intellect, and particulars, known by the external 
and internal senses. Reasoning takes place at several levels, concept to concept, 
concept to particular, and particular to particular. Again, the syllogism example: 
all men are mortal (concept to concept), John is a man (particular to concept), 
and James is also a man like John (particular to particular). Note that the pro-
cesses meet all the requirements of the sense–think–act sequence important 
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to the classical and connectionist models. Also, for those seeking additional 
information, note that elaborate presentations of this model occur from ancient 
(Aristotle, De Anima, trans. 1907) to contemporary sources (Feser, 2005, 2009, 
2019; Madden, 2013; Spalding et al., 2019).

Hylomorphic dualism postulates a three-step process of concept formation 
and judgement. The first two steps have been described previously, namely, the 
formation of the phantasm and the process of abstraction. The final step, judge-
ment, involves movement from the universal concept back to the particular. This 
involves confirming that the particular sensory composite of matter and form 
is a match to the universal concept (this process is known as conversion to the 
phantasm in the A–T model).

Conclusions

The first thing to conclude, perhaps surprisingly, is that there is much overlap 
between the classical and connectionist models and the A–T model. The sections 
on the external and internal senses describe these common elements in some 
detail. These same processes overlap with judgment, as the A–T model descends 
back into brain mechanisms. However, note that, in all of the sense–think–act 
sequence, the A–T model would employ a four cause, hylomorphic explanation, 
whereas explanation by the classical and connectionist models would rely on 
mechanistic, efficient cause oriented principles. The A–T model advocates hylo-
morphic dualism and the classical and connectionist models do not accept any 
form of dualism.

The A–T model offers solutions to problems plaguing the classical and con-
nectionist models, as follows: (a) A–T solves the intentionality problem, a serious 
issue for the classical model and a continuing problem for connectionism, by 
dealing directly with the sensory system perception of the world (see Spalding, 
Stedman, Hancock, and Gagné, 2014, for more discussion); (b) A–T solves the 
computer–brain speed issues by dealing directly with the brain without any 
attempt to demonstrate equivalence of computers and the brain; (c) A–T offers a 
solution to the semantic or meaning controversy by reasserting a psychology that 
predates the Cartesian mind–body doctrine. Of course, the pre-Cartesian A–T 
psychology was challenged, specifically by the claims of Nominalism; (d) A–T 
incorporates the connectionist focus on learning. The A–T model would agree 
that learning enriches the external and especially the internal senses leading to 
more elaborate phantasms, which, though still an assembly of sensory data, allows 
for more elaborate abstractions of universal concepts; (e) A–T can incorporate 
all findings of neuroscience but would deny that these findings offer the entire 
explanation of cognition; and (f) the A–T model offers a better explanation of 
higher-order concept formation and thinking than the classical model’s primitive 
electrical circuits or the connectionist “canary” learning model, although both can 
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be incorporated into the A–T format. In sum, the A–T model is a viable alterna-
tive to the classical and connectionist models but is, in fact, compatible with both 
the classical and connectionist models at least at the brain level.

So far there has been little discussion of cognitive psychology specifically. That 
was purposeful because, as outlined in the goals, our primary interest was in 
the classical and connectionist models. However, cognitive psychology is tightly 
bound to some elements of the classical model and a great deal to connectionist 
theory. Hence, any weakness in the classical model and connectionism will carry 
over into cognitive psychology. I propose that cognitive psychology might profit 
from a closer look at A–T as a metaphysical underpinning (see Spalding et al., 
2019 for more discussion).
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