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Huntington’s disease (HD) is an autosomal dominant disease in which severe atrophy of
the basal ganglia is accompanied by progressive dementia and chorea. An initial
biochemical observation was that there was a marked deficiency of GABA and its
biosynthetic enzyme glutamate decarboxylase (GAD) in HD basal ganglia. This was true
of both the striatum and its sites of projection, the globus pallidus and substantia nigra.
In our own studies we have confirmed the GABA deficiency and have shown that it
correlates with pathologic grade. There is a gradient of GABA loss with the caudate being
most severely affected followed by the putamen and nucleus accumbens. There were no
significant changes in cerebral cortex. Studies of GABA receptors have shown reductions
in the striatum with increased numbers of receptors in the pallidum, consistent with
denervation hypersensitivity. Numerous trials of GABA replacement therapy using
various agents have been unsuccessful despite evidence that these agents increase CSF
concentrations of GABA. Therefore, the GABA deficiency alone is unlikely to be crucial
for the clinical manifestations of HD. GABA deficiency appears to be a marker for loss of
striatal spiny neurons in HD and knowledge of its deficiency has led to improved animal
models of the disease.

Huntington's disease is an autosomal disorder of midlife onset characterized
by progressive involuntary choreiform movements, psychological change, and
dementia (Martin, 1984; Shoulson, 1984). Although there were several early
descriptions of hereditary chorea the illness gained major recognition following
the report of George Huntington in 1872. Huntington and his father had
studied familes with the illness in East Hampton, Long Island. Although
Huntington’s disease can manifest itself either in children or the elderly the
mean age of onset is typically 35-40. The movement disorder is the most
conspicuous feature. The earliest choreic movements occur in the fingers, toes
and face. These are quick jerky movements or sometimes a constant fidgeting.
As the illness progresses the motoric disturbance spreads to the trunk and the
oropharynx leading to progressive incoordination, immobility, unsteadiness,
dysarthria and swallowing difficulties. Intellectual decline and dementia are
invariable features of Huntington’s disease. Emotional disturbances and
changes in personality may precede or accompany the onset of chorea. Patients
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with Huntington’s disease are at high risk for suicide. The motor disturbances
and dementia eventually lead to total incapacitation and patients often die
after 10 to 25 years from inanition or pneumonia.

Neuropathology

The major neuropathologic findings in HD are a marked atrophy of the basal
ganglia and frontal cortex. The extent of the neuronal degeneration found at
the time of death is dependent on the length of time the clinical signs have
been manifest and the age of onset. Vonsattel et al. (1985) have established a
grading system from 0 to 4 for the degree of degeneration where 0 represents
no visible alteration and grade 4 is severe atrophy of the basal ganglia. The
microscopic changes typically show a loss of small and medium-size neurons in
the basal ganglia with the relative proportion of glial cells increased (Lange,
Thorner, Hopf, and Schroder, 1976). Vonsattel et al. (1985) found that the
earliest pathologic changes were a loss of medium-sized spiny neurons in the
most medial and dorsal portions of the caudate nucleus. Furthermore, Roos,
Pruyt, deVries, and Bots (1985) described the greatest loss of neurons in the
most dorsal regions of the putamen. The more ventral region of the caudate
and putamen is contiguous with the nucleus accumbens, and it has been noted
for some time that this limbic region of the brain rarely shows atrophy early
in the disease. However, when there is severe brain atrophy, the nucleus
accumbens may be reduced in size along with all other regions of the brain.

Striatal Anatomy

Nissl stained sections of striatum show two neuronal populations based on
size. Medium-sized (10-20 micron) neurons account for 90% of the total and a
large sized group makes up the remainder (Graybiel and Ragsdale, 1983). These
neuronal groups can be further subdivided on the basis of Golgi studies into 5
subsets of neurons (Graveland, Williams, and DiFiglia, 1985). The majority
(70-80%) of neurons are medium-sized spiny neurons (type I). These neurons
are larger and have larger dendritic fields and lower spine density than their
counterparts in the monkey (Graveland et al., 1985). A second spiny type (type
1) is medium to large with sparse spiny dendrites (10%). Aspiny neurons are
composed of medium (type I) and large (type 2) neurons. These neurons can be
identified in Niss| stained sections by a characteristically indented nucleus.
They have locally arborizing axons and account for 10-20% of human striatal
neurons. The final category consists of small neurons with variable dendritic
morphology (1-2%). Retrograde transport experiments have shown that the
medium-sized spiny neurons account for most of the projecting neurons in the
striatum while aspiny neurons are involved exclusively in local intrinsic striatal
circuits (Graybiel and Ragsdale, 1983).
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Several neurotransmitters have been localized to spiny type neurons. Spiny
neurons contain the GABA synthetic enzyme, glutamic acid decarboxylase as
well as GABA itself (Ribak, Vaughn, and Roberts, 1979). These neurons project
to both segments of the pallidum and the substantia nigra pars reticulata (Van
Den Pol, Smith, and Powell, 1985). Enkephalin is contained in about half of the
GABA neurons (Aronin, DiFiglia, Graveland, Schwartz, and Wu, 1984; Penny,
Afsharpour, and Kitai, 1986). These neurons project preferentially to the
external pallidum and substantia nigra (DiFiglia, Aronin, and Martin, 1982b).
Both substance P and dynorphin are also localized to striatal spiny neurons
which project to the internal pallidum and substantia nigra pars reticulata
(Bolam, Somogyi, Takagi, Fodor, and Smith, 1983; Chesselet and Graybiel,
1983; Zamitr, Palcovits, Weber, Mezey, and Brownstein, 1984). Some substance
P neurons also appear to contain glutamic acid decarboxylase (Penny et
al., 1986).

Aspiny neurons contain a variety of neurotransmitters. Some neurons take
up tritiated GABA and are presumed to be GABAergic (Bolam, Clarke, Smith,
and Somogyi, 1983). The best characterized are medium-sized aspiny neurons
‘in which both somatostatin and neuropeptide Y are colocalized (DiFiglia,
Aronin, and Martin, 1982a; Kowall et al., 1987; Takagi, Somogyi, Somogyi, and
Smith, 1983; Vincent and Johansson, 1983). The somatostatin-neuropeptide Y
neurons account for 3-4 percent of the total striatal neuronal population. Of
interest, these neurons also contain the histochemical marker NADPH-
diaphorase. There is a 100% colocalization of these three neurochemical
markers in human striatal neurons (Kowall et al., 1987). Both VIP and CCK
have also recently been demonstrated in small populations of striatal aspiny
neurons (Takagi et al., 1984; Theriault, Marshall, and Landis, 1984). Large
aspiny neurons contain both choline acetylcransferase and the enzyme
acetylcholinesterase (Vincent, Staines, and Fibiger, 1983).

Postmortem Studies of GABA in HD

Huntington’s disease was one of the first degenerative illnesses in which
postmortem biochemical measurements were made. Perry, Hansen, and
Kloster (1973) were the first to report that levels of GABA are considerably
reduced in the caudate, putamen, globus pallidus and substantia nigra in HD.
They also found significant reductions of GABA in occipital and temporal
cortex but not in frontal cortex or cerebellum. In their studies homocarnosine,
a dipeptide consisting of gamma aminobutyrl histidine which is formed from
GABA, was significantly reduced in caudate, putamen, globus pallidus and
substantia nigra in HD. Increased concentrations of glycerophosphoethanol-
amine in the same regions were unexplained.

These findings were confirmed in Bird and Iversen’s study (1974) in which
significant reductions in glutamic acid decarboxylase (GAD) activity and
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GABA were found in HD caudate, putamen, globus pallidus and substantia
nigra. In other brain regions such as frontal cortex, hypothalamus and
hippocampus there was no significant decrease in GAD activity. The loss of
GABA and GAD in the basal ganglia has been confirmed in several other
studies (Ando, Gold, Bird, and Roth, 1979; McGeer, McGeer, and Fibiger, 1973;
Stahl and Swanson, 1974; Urquhart, Perry, Hansen, and Kennedy, 1975).

Subsequently Wu (Wu, Bird, Chen, and Huang, 1979) and Spokes (1980)
studied over 50 cases of HD and a comparable number of controls in which age
and agonal status had been taken into account. They confirmed substantial
reductions in GAD activity in the striato-nigral pathway. The activity of
GABA transaminase, the enzyme which catabolizes GABA, was found to be
normal in HD (Urquhart et al.,, 1975). As mentioned, homocarnosine,
a metabolite of GABA, is reduced in HD, probably reflecting the
GABA deficiency.

In our own studies we have measured concentrations of GABA in nine
cortical and nine subcortical regions from 17 pathologically graded cases of
Huntington’s disease and ten controls without neurologic illness (Ellison, Beal,
Mazurek, Malloy, and Martin, in press). We found that deficits of GABA
correlated with increasing pathologic grades. There was a gradient of GABA
loss across the striatal nuclei. The most marked changes were found in
the caudate followed by the putamen and nucleus accumbens. Significant
reductions in GABA content were found in both segments of the globus
pallidus (external greater than internal) and both parts of the substantia nigra
(reticulata greater than compacta). Measurements of GABA concentrations
in cerebral cortex were normal in all nine regions examined including occipital
cortex, We found no significant changes in hippocampus, claustrum, or
subthalamic nucleus. An unexpected finding concerned a significant increase
in GABA in the anterior nucleus of the thalamus but there was no alteration
in the ventrolateral and dorsomedial thalamus. Interestingly, no significant
alterations in taurine, another putative inhibitory neurotransmitter, were
observed in any of the regions examined.

Consistent with the colocalization of GABA with enkephalin in striatal
neurons, significant reductions in enkephalin have been found in HD globus
pallidus and substantia nigra (Emson, Arrequi, Clement-Jones, Sandberg, and
Rossor, 1980). Substance P may also be colocalized with GABA in some striatal
neurons, and a large number of studies including our own have found reduced
concentrations of substance P in HD (Beal, Ellison, Mazurek, Bird, and Martin,
1986; Beal and Martin, 1986).

CSF Measurements

Initial measurements of CSF concentrations of GABA in HD reported
decreases. Perry and Hansen however argued that GABA in CSF was not
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accurately measurable using previous techniques. Using refined techniques
Perry et al. (1982) found no differences between CSF GABA in 73 controls and
22 HD patients. This has been confirmed in another study (Manyam and
Tremblay, 1984). This finding suggests that basal ganglia GABA levels are not
well reflected in CSF and that measurements will not be useful as an index of
activity of disease.

GABA Receptors

Several tissue homogenate binding studies have shown reduced
concentrations of GABA receptors in HD striatum and increased numbers of
receptors in the substantia nigra (Lloyd, Dreksler, and Bird, 1977; Van Ness,
Watkins, Bergman, Tourtellotte, and Olsen, 1982). Recent studies have
employed quantitative autoradiography. Reductions in GABA receptors
have been found in caudate and putamen as were increases in numbers
of GABA receptors in the pallidum, consistent with a denervation hyper-
sensitivity (Penney and Young, 1982; Walker, Young, Penney, Dovorini-Zis,
and Shoulson, 1984).

GABA Replacement Therapy

The marked reductions of GABA in HD have led many investigators to
attempt to restore GABA levels as a therapeutic approach to HD. Numerous
attempts at GABA replacement therapy have been made with a wide variety of
drugs. These have included muscimol (a GABA-mimetic drug) [Shoulson,
Goldblatt, Charlton, and Joynt, 1978], isoniazid (a GABA aminotransferase
inhibitor) [Manyam, Katz, Hare, Kaniefski, and Tremblay, 1984; McLean, 1984;
Perry et al., 1982], THIP (a GABA receptor agonist) [Foster, Chase, Denaro,
Hare, and Tamminga, 1983], and gamma acetylenic GABA (an irreversible
inhibitor of GABA transaminase) [Scigliano et al., 1984; Tell et al., 1981].
Several of these agents were shown to elevate both CSF and brain GABA
concentrations (Manyam and Tremblay, 1984; Perry, Wall, and Hansen, 1985;
Tell et al., 1981). Despite this, all studies to date have shown no clinical
improvement and no alteration in the course of the illness. These
disappointing results suggest that a deficiency of GABA is not crucial to the
clinical manifestations of HD.

Significance of GABA Deficiency in HD

Although the GABA deficiency in HD has not responded to replacement
therapy it has stimulated further characterization of the neurochemical
features of HD. The GABA deficiency most likely reflects loss of spiny neurons
which utilize GABA as a neurotransmitter. As other neurotransmitter markers
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of spiny neurons have been measured in HD, it has become apparent that they
are similarly depleted. Thus, both substance P and dynorphin are depleted
both in the striatum and its projection sites (Beal and Martin, 1986; Dawbarn et
al., 1986; Seizinger et al., 1986). In contrast, neurotransmitters contained
within aspiny neurons in HD are selectively preserved (Beal and Martin, 1986;
Dawbarn, DeQuidt, and Emson, 1985; Ferrante et al., 1985). These include
both somatostatin and neuropeptide Y. We have also recently found that
acetylcholinesterase staining aspiny neurons are relatively preserved in the HD
striatum (Ferrante, Kowall, Ross, Martin, and Richardson, 1986).

Many of these features can be reproduced in animals using the excitotoxin,
quinolinic acid. We have found significant reductions of both GABA and
substance P, yet somatostatin and neuropeptide Y are preserved (Beal, Kowall
et al., 1986). Although the GABAergic deficit in HD may not be critical to the
pathogenesis of HD, and probably is secondary to a pathologic process affecting
all striatal spiny neurons, it has led to improved animal models of HD. Further
studies of these models may improve our understanding of HD and could lead
to therapeutic intervention aimed at halting the degenerative process.
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