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Causal Knowledge:
What Can Psychology Teach Philosophers?
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Theories of how organisms learn about cause-effect relations have a history dating
back at least to the associationist/mechanistic hypothesis of David Hume. Some con-
temporaty theories of causal learning are descendants of Hume’s mechanistic models of
conditioning, but others impute principled, rule-based reasoning. Since even primitive
animals are conditionable, it is clear that there are built-in mechanical algorithms that
respond to cause/effect relations. The evidence suggests that humans retain the use of
such algorithms, which are surely adaptive when causal judgments must be rapidly
made. But we know very little about what these algorithms are and about when and
with what ratiocinative procedures they are sometimes replaced. Nor do we know how
the concept of causation originates in humans. To clarify some of these issues, this
paper surveys the literature and explores the behavioral predictions made by two con-
trasting theories of causal learning: the mechanical Rescorla-Wagner model and the
sophisticated reasoning codified in Bayes’ Theorem.

David Hume, famously, gave us an analysis of the concept of causation
which includes, in one of its versions, reference to a hypothesis about the
origin of that concept. Hume had no way of empirically testing his hypothe-
sis; whatever introspective grounds there are for his claim that experienced
regularities produce expectations, one cannot move from this fact alone to
the conclusion that expectations are the origin of part of our idea of a cause.
Nor can anyone reliably remember the formation of this fundamental idea in
his or her own case. But Hume was quite right, we believe, in seeing the rele-
vance of the psychological question to epistemology.

In fact, there are several significant questions, among them: How do
human beings (and other animals) apprehend the causal structure of the
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world? As we learn to make causal judgments, what are the earliest or most
primitive of these, and what are their sources in our experience! By what
stages do strategies which yield causal understanding progress in complexity,
culminating ultimately in the most sophisticated procedures of scientific rea-
soning? Does causal reasoning ever make use of some real or imagined con-
stituent of necessary connection; and if so, what is its source and what use is
made of it? Finally, are causal hypotheses arrived at and confirmed on the
basis of single experiences, by means of enumerative induction, through
Bayesian reasoning, or by some other means?

These questions are all of them empirical ones, and most, if they can be
answered at all, must be settled by psychologists, not by philosophers; yet,
they should be of great interest to philosophers, given the central place of
causal relations in “all reasonings concerning matters of fact,” as Hume puts
it. Nevertheless, philosophers have paid rather little attention to these ques-
tions in recent decades (which contrasts with the early years of this century);
and even Hume was surprisingly cursory in that survey of his own experience,
which failed to find any objective constituents of causal relations beyond
spatiotemporal contiguity and constant conjunction. At the same time, the
last 40 years have seen the emergence of the empirical study of causal think-
ing in humans and animals by psychologists.

Perhaps the importance of the questions we have raised needs no justifica-
tion for those epistemologists who look to science to provide an account of
the acquisition of knowledge. Those who claim that evolutionary selection
guarantees the reliability of sensory processes are also prone to think that
evolution has secured the ability of organisms to determine causes. But this is
too swift. Clearly, fitness only requires of an organism that it behaves roughly
as if it knew how to “save the phenomena”—those phenomena, in particular,
critical for its survival.

But the empirical findings, even those which go beyond introspection,
ought also to interest those philosophers who insist that epistemology must
begin with the egocentric predicament. Foundationalists, for example, should
ultimately be concerned to show how our empirical evidence serves to justify
those scientific theories that best explain the processes by means of which
that very evidence is acquired.

The purpose of this essay, then, is to survey a number of different ap-
proaches which can be and have been taken in investigating the formation
of causal judgments. It will become clear that there is a great deal we do not
now know about these matters; thus, we shall raise more questions than we
answer. Still, we hope in this way to bring to the attention of philosophers
the progress that has been made, and the nature of some of the investigations
currently underway. We shall also take occasion to propose some avenues for
future research.
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The Basis in Experience for Causal Judgments

Experimental research on causal judgment was largely initiated by the
work of Michotte (1946/1963) on causal perception. Michotte performed a
series of experiments in which adult subjects were presented with colored
shapes whose motions could be analogized more or less closely to various col-
lision phenomena; parameters such as velocity and direction of motion, spa-
tial contact, and lapse of time between the stopping of one shape and the
onset of motion in another could be controlled by the experimenter. When
these kinematic variables closely reproduced those of common dynamic pro-
cesses, subjects spontaneously reported what they saw in causal terms (e.g.,
that they saw the red square make the green one go forward). Moreover, only
a single experience was sometimes required to prompt such reports, whereas
no number of repetitions elicited causal descriptions when the parameters
deviated from those which mimicked collision processes. Michotte regarded
these observations as evidence that subjects were able to make noninferen-
tial causal judgments on the basis of visual data. He speculated that the basis
of these judgments is the perception of a transfer of motion, possessing a kind
of genidentity of its own and distinct from the moving objects, from one
object to another.

Among philosophers, Harré and Madden (1975) have given prominence to
Michotte’s results, which they see as confirming their analysis of causation in
terms of the action of “powerful particulars.” Similarly, Michotte’s work might
be taken to support singularist theories of causation (Anscombe, 1971).

Piaget (1971/1974), on the other hand, criticizes Michotte’s conception on
the ground that the transfer of a quantity of motion—which retains its iden-
tity through the transfer and thus links the motions of two objects—is not
something that can be seen. Perception of a causal connection between
mover and moved, therefore, involves a construct. And, indeed, if Piaget’s
phenomenological claim is correct, it will not be difficult for a Humean to
deflect the implication of Michotte’s results, even allowing for the spontane-
ity of subjects’ causal judgments. For the spontaneity may result from what
Hume calls habit, previously established. The fact that Michotte’s subjects
are adults suggests that long prior experience has firmly entrenched the incli-
nation to interpret certain of Michotte’s displays in causal terms, and has
produced resistance to seeing others in that way. !

' Subsequent studies of Michotte’s phenomena have some bearing on the Humean argument, but
they are not decisive. Yéla (1952) found that Michotte’s results could be essentially duplicated
when projectile A stops short of a target object B and B directly begins to move. Yéla argues
that this runs counter to natural experience, especially since motion transferred across the gap
must be “instantaneous” to produce a strong causal impression. But Yéla forgets that many
previously experienced forces appear to be transmitted instantly across empty space—e.g., mag-
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Piaget’s own work—which attempts to account for the development of
causal understanding in children—derives some inspiration from the much
earlier work (ca. 1800) of Maine de Biran. Biran (1942) held that the source
of the idea of causation lay in the subjective impression of unity between the
subject and his/her actions, a unity which incorporates willing and muscular
effort. Hume, of course, considers and rather summarily dismisses volition
and effort as sources of the idea of causation. Piaget (1930/1966; see also
Uzgiris, 1984) adopts Biran’s notion that the subjective experience of force is
the source of causal cognition. In his later work, Piaget (1971/1974) empha-
sizes the interplay between the development of children’s conceptions of log-
ical “operations” and their understanding of causal relations. In visually
perceived collisions, a child must construct causal connections, and this con-
struction would not be in any case possible if the child were unable to refer
to and generalize from tactual and kinaesthetic data.

According to Piaget, the constructions of logical and causal conceptions
proceed hand in glove through a series of stages which can be traced from
infancy to pre-adolescence; but most of this development takes place after
the acquisition of language. Experiments which allow children to manifest
causal reasoning through nonverbal behavior now suggest that much causal
reasoning occurs at a far earlier age than Piaget suspected (see Golinkoff,
Harding, Carlson, and Sexton’s 1984 review; also Berzonsky, 1971; Bullock
and Gelman, 1979; Bullock, Gelman, and Baillargeon, 1982; Elek, 1990;
Sedlak and Kurtz, 1981; Shultz, 1980). One striking observation which con-
firms this point has been reported by Watson and Ramey (1972), who showed
that eight-week-old infants regularly learn to control the temporary motion
of a mobile by head movements on a pillow containing a pressure-sensitive
switch. Watson and Ramey additionally noted that infants who control a
mobile smile more frequently at it than do infants who have just as frequent
exposure to a turning mobile, but who have no control over its actions.
Infants who had control and then were denied it sometimes displayed dis-
tress, even though still given exposure to a turning mobile. These observa-
tions suggest that an eight-week-old infant understands the difference

netic forces, gravity, and the like. Several studies suggest the influence of previous experience
upon “spontaneous” causal judgments—e.g., Griiber, Fink, and Damm (1957), Gemelli and
Capellina (1958), Powesland (1959), and Olum (1956, 1958). Olum tested 7-year-olds with a
Michotte apparatus, but tried to explain the difference she found between adult judgments
and theirs in terms of developmental differences in the perception of purely kinematic fea-
tures. More interesting results are recorded by Leslie (1982), who habituated 4!/2- to 8-month-
old infants to Michotte-type motion pictures of “normal” and time-delayed collisons, and
then recorded their degree of attention (judged by eye movements) when shown movies in
which the target projectile fails to move after being struck or moves without being struck. The
results suggest that these infants spontaneously attend to at least the feature of continuity of
motion. Whether this should be interpreted in Michotte’s fashion remains an open question.
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between the events it causes and those over which it does not exert control.
We turn now to some questions raised by such results.

The Primitive Sources of Causal Judgment

It would be of great interest to know whether all of our capacity to judge
causes and effects can be traced back to experiences of a single sort; or
whether experiences of a variety of sorts can “trigger” such judgments.
However, because the acquisition of causal understanding seems to begin in
the earliest stages of preverbal infancy (if not before birth), it is a difficult
process to investigate. For example, one of us has argued elsewhere (Fales,
1990) that the most primitive and essential experience which yields a con-
cept of causal relation is the tactile and kinaesthetic experience of pushes
and pulls, whether or not accompanied by volition. This view has it that the
idea of a necessary connection between events—which is a constituent of
our idea of causal connection—derives from sensations of force. One way to
draw the contrast between such a theory and Hume’s classical analysis of cau-
sation is to recognize that, on Hume’s theory, the result of a felt push or pull
could not in any sense be predicted on the basis of a single experience,
whereas it could be predicted, in principle, on the alternative view. Such an
alternative would thus take tactual recognition of causal relations to be pri-
mary; inductive reasoning would be a secondary and parasitic process which
would take over where there was no experience of felt force, but only of
repeated patterns.

Now human subjects, no matter how young at the time of testing, will
already have had repeated tactual experience of force and its consequences;
and tactual sensitivity to contact forces is present in all animal organisms
except perhaps the most primitive. Thus, the circumstances required for the
envisioned expetiment unfortunately cannot be satisfied except in imagina-
tion; though some indirect evidence exists,” we cannot hope for a direct
experimental resolution of the issue. But, indeed, let us suppose that such an
experiment could be performed.

2 Bullock, Gelman, and Baillargeon (1982} do report that 3- and 4-year-old children rely less on
covariation in making causal judgments and more on spatial and temporal contiguity; also, in
reasoning that one event caused another, they rely on the existence of an observed or imputed
sequence of mechanical contacts linking the two. Shultz (1982) reports an ingenious set of
experiments, some with children in Mali who had no previous exposure to the gadgets {(e.g.,
tuning forks, flashlights) used by the experimenter. The experiments were designed so that
causal judgments based on spatiotemporal contiguity and covariation were made to compete
with judgments arrived at by positing some transmission of force. According to Shultz, the
results show that even 3-year-olds favor reasoning of the second sort. But, unfortunately, it is
unclear how much these children may have relied on analogies to previous experience. These
data, while suggestive, in no way decisively favor the non-Humean hypothesis being discussed.
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A subject who has not previously had any tactile or kinaesthetic sensations
(perhaps because of a reparable neurological defect) now suddenly acquires
them; experiences a single push on some part of the body and its subsequent
motion; and is asked to form an opinion, on the basis of the single experi-
ence, about the outcome of a similar future push. Suppose the subject were to
form the “correct” expectation. Although Hume’s theory allows only the
gradual formation of expectations by degrees, there is a way of responding to
this hypothetical result which preserves Hume’s more fundamental claim
that no natural necessity is perceived to link pushing to motion. This
response explains that result by postulating that the mechanism that associ-
ates the idea (or expectation) of an effect with a cause may in certain sorts of
cases be triggered by a single experience to increase abruptly to full strength,
rather than arising gradually through repeated experience. Whether there are
such mechanisms is a question which must be resolved empirically; we men-
tion this possibility because the existence of cognitive processes which asso-
ciate causes with effects in a more or less mechanical fashion (whether
abruptly or gradually) is plausibly predicted by evolutionary theory. It serves
an organism well to be sensitive to the causal contingencies of its environ-
ment; and because of the great survival value of such sensitivity, we might
reasonably expect it to evolve in primitive forms of life which do not think
at all, and to be mediated in them by quite simple mechanisms. When we
reflect that any kind of conditioning poses the problem of recognizing a
causal contingency, it becomes apparent that very primitive forms indeed are
capable of some learning of causal relations (at least in the sense of develop-
ing systematic and appropriate responses). For example, Hermissenda, a nudi-
branch mollusk, can be conditioned to associate light with rotation, and the
strength of this conditioning is degraded when light signals unpaired with
rotation or rotations unpaired with light are inserted into the training sched-
ule (see Farley, 1987a, 1987b).

Animal conditioning experiments, on which there is an extensive literature
(see Kimble, 1961; Mackintosh, 1974), largely investigate the capacity to
respond to causal contingencies, where the evidence for those contingencies
takes a “Humean” form; that is, the animal is presented with certain patterns
of covariation between observable events, but the events are not directly
linked as experienced pushes to experienced motion, and the mechanisms
which in fact link event-pairs are not observable by the animal. Hence, even if
causal relations are in other circumstances directly perceivable, the only
recourse available here is induction, or something mimicking it. This literature
is surveyed in the next section, where we consider what is known about factors
which control the ability to learn causal relations under these conditions.

That discussion will shed some light on a fundamental issue which must
now be raised. We have just alluded to the fact that even very simple forms
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of animal life exhibit a capacity to acquire differential and plastic responses
to causal contingencies. Placing this behavior at one extreme, we may put at
the other the sophisticated use of probability computations and statistical
methods devised to determine causal relations by some professional gamblers
and by scientists. In the latter case, there is an explicit and well-articulated
use of mathematical theory to provide the quantitative computational strate-
gies sometimes required to reveal subtle causal relations.

Clearly, it will not do to explain the causal sensitivities of Hermissenda, say,
by ascribing to them the capacity for propositional thought or mathematical
calculation. Whether or not we ascribe some primitive sort of awareness to
these mollusks, we will want to show how their learning abilities are mediat-
ed by simple algorithms embodied in essentially mechanical processes of
some sort, as Farley (1987b) has begun to show. Let us say that in Hermissenda,
we expect a mechanistic explanation of response to causal contingencies,
whereas in scientists and clever gamblers, it is reason which supplies the con-
clusions. (This is surely a viable distinction, even if it could be shown that
rational thought is embodied in neural mechanisms, and even if it could be
shown that there is a continuum between the procedures of scientific method
and the primitive algorithms used by Hermissenda.) Now our question may be
crudely put as follows: By what stages, and how, is the transition made
between mechanistic learning and reasoned cognition?

Mechanism vs. Reason

One of the earliest mechanistic theories of learning (of causal relations)
was put forward by Hume in his Treatise. Having despaired of solving the
problem of induction, and hence of giving an account of learning which
shows how our causal judgments can be founded upon adequate reasons,
Hume (1758/1955, pp. 55-56) proposes that the causal judgments we anyway
constantly make must be generated in an essentially mechanistic way, by pro-
cesses with which nature has fortunately provided us, and over whose opera-
tion we have little rational control. Hume’s proposal is that the regular
recurrence of a pattern of spatiotemporally contiguous events produces in the
mind a progressive association of the “idea” of the first sort of event with
that of the second—an association which results in a gradual increase in the
strength with which, given an event of the first sort, we expect the subse-
quent occurrence of an event of the second. It is noteworthy that Hume sup-
posed his model to be applicable to human beings and to other animals alike.

Because the elements of Hume'’s model are mental items, such as ideas and
sensory impressions, it might seem inappropriate to characterize his theory as
mechanistic. However, we believe the term is entirely apposite: the intended
contrast here is between the workings of reason or understanding and the
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workings of a machine. The way in which ideas come to be associated (or
disassociated) is taken by Hume to be governed by laws in much the same
way as the interaction of physical particles might be.

As pointed out above, Hume’s theory is not the only mechanistic theory of
learning one might entertain. Thus, one might imagine that some associations
are innate, in the sense that once the “ideas” arise from sensory impressions,
they are automatically and immediately associated in ways which do not
depend upon regular conjunction. Or, one might hold that every idea, once
formed, has a tendency to be associated with every other, the function of
experience being progressively to disassociate those ideas which do not corre-
spond to impressions regularly conjoined. Nor are these alternatives the only
imaginable ones. But in any case, it is Hume’s model, or refinements of it,
which have come to be adopted by many contemporary psychologists, and
which seem indeed to be best confirmed by the experimental data on animals
and humans.

Here, we shall survey some of these learning theories and the experimental
results which bear on them. We shall also propose a rational model of causal
judgment formation, which largely duplicates the predictions of the mecha-
nistic models, and ask whether there are divergent predictions which would
permit an experimental decision between them. The rational model we pro-
pose is well known to philosophers, but it has not, so far as we are aware,
been proposed or tested empirically by psychologists. We shall then return
finally to the question posed at the end of the previous section: Where does
mechanism leave off and reasoned understanding begin?

Experimental Findings

According to Hume, three conditions must be met if we are to say that an
event, C, is the proximate cause of another, E: (1) C must immediately pre-
cede E, (2) C must be spatially and temporally contiguous to E, and (3) C
and E must be of types which are constantly conjoined. Although Hume does
not allow causal connections which are probabilistic, he does allow that cau-
sation may be “mixed with” chance, and also that events may be partially
brought about through the action of hidden causes. Thus, the observed
covariation between C and E, upon which we base a judgment of causal con-
nection, may be statistical. Here, the strength of our judgment is a function
of the strength of the covariation. (Hume does not clearly distinguish causal
strength from the strength of our belief that the causal relation holds.)

Psychologists have attempted to discover the relative dominance of these
three factors, among others, in the production of causal judgments. Three
other factors in particular are worth mentioning: the perceptual salience of
the stimuli (C and E); the strength of reinforcement, where one of the
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events (typically E) is a reinforcer; and, where there is a temporal or spatial
gap between C and E, the existence of other cues which might facilitate the
construction of a chain of events leading from C to E.

Strength of conditioning is usually degraded by the introduction of a tem-
poral gap between cause and effect. Animal studies show that in most cases,’ a
gap of several seconds is enough to affect learning significantly. Experiments
by Mendelson and Shultz (1976), Siegler and Liebert (1974), and Siegler
(1975) with four- to nine-year-old children suggest that, especially in children
younger than eight years, delays of only five seconds inhibit causal judgments
(see also commentary in Sedlak and Kurtz, 1981). Cues which permit an
explanation of the delay in terms of an intervening causal process significant-
ly restore causal judgments; but failing this, temporal contiguity seems to take
precedence over invariable covariation in supporting causal judgments.
Furthermore, temporal precedence appears to outweigh spatial contiguity and
to be relied upon by children as young as three years in making causal judg-
ments (see Bullock and Gelman, 1979; Sedlak and Kurtz, 1981).

A considerable body of data has been collected on the ability of humans
and animals to assess causal connections, data which measure the strength of
association between a conditioned stimulus (CS) C which is followed by an
unconditioned stimulus (US) E. The parameters which have been varied in
such experiments include: the frequency with which C is not followed by E,
the frequency with which E is not preceded by C, the complexity of C and E,
and the addition or subtraction of stimuli to or from C and E. E is usually a
positive reinforcer or punisher, e.g., food or electric shock.

Hume’s discussion of causation evokes a simple picture of the conditions
under which causal beliefs are acquired: stimulus C is invariably followed by
stimulus E;* E immediately follows C and occurs next to it or in the same
place; and C-E pairings are spaced well apart, so as not to confuse the issue
of which C pairs with which E. However, even lower animals are able to
establish causal connections where there is a temporal gap between a C and
its paired E; where the gap is not of like duration from one pairing to the
next; where there are (variable) spatial gaps; where unpaired occurrences of
C or E intervene; and where sequential Cs and Es occur so closely spaced
that it is unclear which E (if any) pairs with which C. To be sure, such com-
plexities degrade both speed of learning and the strength of the acquired
belief. Gormezano and Kehoe (1981) discuss these data.

3 There are notable exceptions. Rats, for example, will learn to avoid foods that make them ill
after only a single aversive experience, even when the onset of illness occurs some hours after
the ingestion of food. Psychologists disagree over whether in such cases generalized learning
mechanisms are superseded by genetically coded specialized sensitivities important for survival
(see Domjan, 1983).

‘Although Hume (1739/1888, pp. 125-137), explicitly allows for the case where E sometimes
fails to follow C, the covariation need only exceed chance.
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The effect of temporal relations between paired Cs and Es is actually quite
complex and not yet well understood. However, certain general features
emerge from the experiments which have been so far performed. Supposing
the duration of events C and E to be relatively short, we would expect that
pairings would be apparent where the interval between a C and its paired
E—the interstimulus interval or ISI—was short compared to the interval
between one presentation of C and the next one (the intertrial interval or
ITI). And this is what we find: when the ISI/ITI ratio is small, learning is
much more rapid than when it approaches or exceeds 1. Alternatively, one
can use Cs which last until, or past, the onset of an E event, and measure
learning rates for short-duration Cs versus long-duration Cs. Here, C and E
are contiguous, but the onset of C is variably related to that of E. Again,
learning is markedly greater when the C-onset to E-onset time is small com-
pared to the ITI. However, the data also suggest that the onset of a stimulus
is more salient than its continuation; thus, a long C-onset to E-onset time
functions, as does a long ISI, to degrade learning even where these times are
small as compared to the ITL. (For a discussion of the data and the literature,
see Gormezano and Kehoe, 1981; also Gibbon and Balsam, 1981; Gibbon,
1981; and Jenkins, Barnes, and Barrera, 1981. Could there be a delay between
the onset of a cause and its immediate effects? On this question, philosophi-
cal opinion is divided. See e.g., Hume 1739/1888, pp. 75-76; Russell 1917, pp.
136-140.)

Nore of this will be surprising. More interesting, perhaps, are data which,
although equivocal, suggest that contingency judgments are weakened when
paired Cs and Es occur simultaneously rather than sequentially, in animals
(see Gormezano and Kehoe, 1981). This result might be taken to suggest that
causal connections are discounted, relatively, where one event is not per-
ceived to precede another. Conceivably, this is because the observed contin-
gency could be explained by an unobserved common cause for both events;
but, alternatively, it may be that one of the stimuli draws attention away
from the other with which it coincides.

In any case, organisms do learn even when ISI/ITI ratios are large and
when unpaired Cs and Es are presented. So one must ask: How do they man-
age it? To see that there are real complications here, let us consider three
strategies by means of which a subject might plausibly arrive at a causal asso-
ciation between C and E, where there are temporal gaps and instances of
unpaired Cs or Es. If we designate by ~C those times when no C is occurring,
we have the following strategies:

I. Measure the probabilities (frequencies) with which E follows C
(=P(CJ/E)) and with which E follows the absence of C (=P(E/~C)), and take
their difference as a measure of the causal effectiveness of C in producing E:

&_ = AP = P(E/C)-P(E/~C).
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1. Measure the average time interval T(E/C) between any C and the next
occurrence of E, and compare this to the average time interval (T(E/~C)
between a nonoccurrence of C and the next E. If T(E/C) < T(E/~C), then C
causally facilitates E.

III. Measure the average time between successive occurrences of E,
T(E,, ,/E,). Compare this to the average time between occurrences of C and
the next succeeding occurrence of E, T(E/C). A positive value for
T(E,, /E)-T(E/C) indicates that C causally facilitates E.

Now under certain circumstances, at least, these measures of C’s “strength”
in producing E are not only qualitatively, but quantitatively equivalent.
Imagine a training period, for example, which consists of successive one-sec-
ond long “runs.” An E either occurs or fails to occur at the end of each run; if
E does occur and a C (one or more) occurs at any time during that run, this
scores as one positive instance of C~E co-occurrence; if C occurs without E
or vice versa, a negative instance is scored. Under these circumstances, it is
easy to show that T(E/C) is inversely proportional to P(E/C); and similarly
for T(E/~C) and P(E/~C); thus, AP is proportional to 1/T(E/C)~1/T(E/~C).
This congruence does not, however, entail that the AP measure and the
time-based measure have equal “psychological reality” for subjects. (For an
experimental investigation of various metrics to predict human perception of
causal relations, see Chatlosh, Neunaber, and Wasserman, 1985; Wasserman,
Chatlosh, and Neunaber, 1983. AP is the most successful metric for predicting
asymptotic judgments of causal strength.)

If, however, the subject does not know the just-described details of the
experiment, then the following puzzles arise with respect to the possibility of
making either relative frequency or average time-lapse estimates:

a) If Es, when they follow Cs, do so after a time lapse—i.e., if Cs occur at the option of
the subject but Es only at the end of a trial—then why don’t these time lapses count as
accurrences of ~C and preempt the covariation between Cs and Es?

b) If there are such time lapses between Cs and Es, how is the subject to divine that a
C is to be correlated only with an E which follows it by less than one second? What is
to prevent C~E pairings from overlapping? Indeed, a variable time-lapse would seem to
encourage such speculation.

¢) Clearly, estimates of frequency and of time lapse will depend upon the principles by
means of which the subject individuates events of type C, ~C, E, and ~E. So if C does not
oceur duting a one-second trial, to how many occurrences of ~C does that correspond?

Even in the artificially simple situation envisioned here, a naive subject has
no objective basis for answering these questions. In real life, where multiple
factors may conspire to produce an event, where time gaps are variable, where
irrelevant and distracting events are numerous and relevant pairings may occur
infrequently or so quickly as to overlap, the problem begins to assume a
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formidable complexity. Nevertheless, since subjects—even animals—can learn
correlations of the sort described, sometimes with amazing rapidity and
accuracy, we must ask what factors other than co-occurrence might facili-
tate such learning. It may be that in natural settings, spatial regularities
between cause and effect, qualitative similarity between them, and covaria-
tion of strength between variable-strength stimuli, can also serve as cues
(see Watson, 1984).

Is there any “natural” period of time after the occurrence of a CS event
during which an animal is on the alert for correlates with it, and after which
succeeding events will not be associated with it? What if more than one CS
event occurs during such an interval or more than one potential US event
occurs with which it (they) may be correlated? We remarked above that
degradation of conditioning is produced by CS-US time lapses, to a degree
which is dependent upon the species and upon the nature of the CS and US.
This fact places an upper bound on the temporal interval which can obtain
between a CS and a US which are subjectively perceived as paired, but it
does not solve the “overlap” problem within that interval.

At the other extreme, we might ascribe to subjects a model of causal con-
nection which requires proximate causes to precede immediately their effects
without gap. On this hypothesis, causal judgments connecting temporally
noncontiguous events will occur only where some feature(s) of the situation
allow(s) the subject to interpolate some hypothetical chain of connecting
causes linking the events. But then it becomes incumbent upon psychologists
to specify those features and to explain how they might operate to suggest
such hypotheses (see Einhorn and Hogarth, 1986, for a brief discussion).
Moreover, although it is not implausible to impute such (perhaps very vague)
hypotheses to human subjects, it is more problematic whether animals such
as rats reason in this way. (We shall return shortly to the issue of how intel-
lectual the formation of causal judgments is.)

With respect to the matter of individuating events, we might plausibly
take our cue from C.J. Ducasse’s (1951) analysis of causation, according to
which the cause of an event X is the total change in the spatially contiguous
circumstances which immediately precedes it. The defects of Ducasse’s
account as a philosophical analysis are well known; but this is no bar to its
usefulness as a psychological suggestion. It may be that only perceptually
salient changes are attended to and regarded as potential causes of subse-
quent changes; from this perspective, if A represents a change which occurs
against relatively stable “background,” an X which follows an A closely
enough will be paired with it, and unpaired Xs will be regarded as uncaused,
or as having hidden causes. Taken in conjunction with a specification of the
maximum allowed temporal gap, this assumption would help us to answer
questions (a), (b), and (c), posed four paragraphs previously.
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Learning Causal Contingencies: Mechanistic Theories

We turn now to a major theory of conditioning and summarize some of its
relevant aspects. The theory is the contiguity model of Rescorla and Wagner
(1972). It will seem to be reductionistic in the sense that it attempts to
explain the learning process in quasi-mechanistic and molecular terms (that
is, in terms of the cumulative effect upon an organism of the moment-by-
moment impingement of stimuli upon it). We shall contrast this theory with
a normative and intellectualistic model of learning more familiar to philoso-
phers, viz. Bayes’ theory of confirmation, applied in this instance to causal
hypotheses.” Having introduced these models of the learning process, we will
ask whether there are empirical results which do or could determine which
one of them gives a more nearly correct account of the process by which
causal beliefs are formed.

Rescorla and Wagner (1972) present a theory of classical or Pavlovian con-
ditioning which is mechanistic—it relies upon laws which govern the forma-
tion of associative strengths between stimuli—and molecular; that is,
associative strengths are modified in step-by-step fashion as new experiences
of stimuli are registered.® According to Rescorla and Wagner, every US
which acts as a reinforcer or punisher (e.g., food or electric shock) supports a
certain maximum degree of associative strength for an organism. This
strength is a measure of the vigor and reliability of those behaviors by means
of which the organism shows that it “expects” the US when presented with
the CS, in the limit where further training does not achieve any further
increase in learning. Given a series of CS—-US pairings, an organism will
learn to associate the two. Calling the CS ‘A,’ we use ‘V,’ to designate the
strength of association to the US which exists at a given time, and A’ to des-
ignate the maximum associative strength that the US will support. If we use
behavior as a measure,’ we find that organisms learn gradually to associate a

*].8. Mill’s rules of induction (1843/1911) can be regarded for our purposes as subsumed by
Bayesian reasoning. A spectrum of other models of learning has been proposed, ranging from
intellectualistic ones which posit the operation of rational principles, to mechanistic ones
which depend on laws ¢f association or refer to neurophysiological processes. A good
overview is provided by Gormezano and Kehoe (1981).

Thus, an organism need not remember the particulars of its previous history of relevant experi-
ences, as it would if it were performing an inductive inference using the straight rule, a rule whose
application requires keeping a score sheet of positive and negative instances of a regularity.

"If by learning we mean something conceptual (viz. coming to recognize a connection
between the CS and US), then this use of behavior requires a number of assumptions, since
there is no a priori guarantee that strength of belief (or whatever corresponds to it in animals)
maps linearly onto strength of behavior. For example, an animal may compensate for the
intrinsic cost (e.g., expenditure of effort) of the behavior, or it may lose or gain interest in act-
ing on its belief, or lose or gain interest in the reinforcer itself. But we will assume that these
difficulties can be discounted—a not unrealistic assumption in many cases.
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CS with a US: changes in associative strength are initially large and then
decrease to zero as learning goes to asymptote. A key idea in Rescorla and
Wagner's approach is the claim that a change in associative strength is a linear
function of the difference between the maximum associative strength, A,
allowed by the US, and the associative strength, V,, which has already accrued
to it:
AV, = 0, B(A-V,)

Here, o, is a learning rate parameter which depends upon the CS, and B is a
Jearning rate parameter which depends upon the uUs.

If we assume that lack of a reinforcing US no longer supports an associa-
tion (rather than, for example, supporting a negative association) between
the CS and the US, then we can account for the extinction of a learned
response: Now, V, decreases at a rate proportional to its previously acquired
strength. Hence,

AV, = 0, B(0-V,) = 0, BV,

The main strength of the Rescorla—Wagner (R-W) theory lies in its ability
to explain the results of a wide range of experiments involving compound
and multiple CSs. Two puzzles of central importance are provided by the
phenomena of blocking and overshadowing. In blocking, the degree to which
a subject has learned to associate a CS, X, with the US is determined after
training under each of the following two schedules: A™; AX™ versus AX*.
(Note the change of notation: ‘A’ and ‘X’ now stand for CSs, ‘+’ for a US,
and ‘= for absence of a US. Here, A* indicates that the subject is trained to
associate a CS [A] with a reinforcer [+], and the semicolon indicates that this
is followed by the training sequence AX", in which two stimuli, A and X, are
presented simultaneously, followed by the reinforcer.) The subjects of the
control group, which are given only AX" training, are presented with the
same number of Xs paired with the US as are subjects of the first group.
Under these conditions, the second group learns to associate X with the rein-
forcer much more strongly; in the first group, the previously learned A™ asso-
ciation apparently blocks conditioning to X.

To explain this result, the R-W theory introduces a second central postu-
late: when a stimulus is part of a compound CS, changes in its strength
depend upon the total associative strength of the compound. Thus, under an
X* schedule (or for that matter, an A*; X* schedule), increments in the asso-
ciative strength of X depend only upon the magnitude of the already-
acquired associative strength of X: AVy=0,B(A-Vy). But under an AX"*
schedule, AVy is determined by AVX=0LXB(7L—VAX) and AV, by
AV, =01, B(A-V,y). Now Rescorla and Wagner assume that the strength V,y
of a compound is simply the sum of the strengths of its components:
Vax=Va*+Vy Given this, it is easy to see how blocking works. Under the
schedule A*; AX*, V, acquires a proportion of the total associative strength,
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A which the US will accommodate;8 thus, the value of V,x may already be
high, relative to A, at the start of exposure to AX*. In that case, increments
in Vy will be small; V, has “gobbled up” most of the associative strength that
the US will support. Intuitively, we might say that the subject discounts the
relevance of X if A seems already sufficient to account for the occurrence of
the US; but this rationalistic way of putting it would misrepresent the essen-
tially mechanistic character of the R-W theory.

Overshadowing is exemplified where conditioning to a CS, X, presented
alone, is compared with conditioning to that CS when presented in conjunc-
tion with a second CS, A. That is, we test for the strength of conditioning to
X after the two schedules AX* versus X*. Not surprisingly, we find that Vy is
weaker after AX* than after X*; A “overshadows” X. In the R—W theory, the
learning-rate parameters o, and 0y determine the extent to which A over-
shadows X. Hence, when A is paired with X, V, gobbles up some proportion
of the associative strength A supported by the US, and Vy is correspondingly
weakened.

We can summarize briefly some further data which the R-W theory han-
dles nicely. The reader can easily supply the relevant explanations where we
omit them.

(1) Consider the schedule A*/A~. (Here, ‘A~ indicates trials in which A is unrein-
forced, and the */" indicates that unreinforced trials are interspersed randomly among
reinforced trials.) This schedule results in weaker conditioning to A, depending upon
the proportion of nonreinforced trials.

(2) The schedules AX*/A*, AX*, and AX*/A~ lead, respectively, to weak, moderate,

and strong conditioning to X.

(3) Let A be a frequently occurring stimulus and B an infrequent one in an initial
A*[B*[X* presentation. Then the schedule A*/B*/X*; AX~; X* leads to slower reacqui-
sition of conditioning to X than does A*/B*/X*; BX~; X*. (Intuitively, the AX~
sequence marks X as a more potent inhibitor than does the BX~ sequence, since A is a
stimulus with greater associative strength than B.)

(4) When USs unsignalled by a CS are interspersed among CS-US pairs (i.c.,
A*[~A*), conditioning to the CS is impaired compared to the case in which no
unsignalled USs are given. (Rescorla and Wagner explain this finding by hypothesizing
that the “constant” background—call it ‘B — acts as a CS, so that we can more accu.
rately represent this schedule by AB*/B*/B~; that is, B alone is sometimes reinforced
and sometimes not. So fong as the reinforcement rate for AB exceeds that for B alone,
there will be some conditioning to A, but B will gobble up some of the associative
strength which otherwise would accrue to A.)

We could extend this list of cases, but it should suffice to suggest the power
of the R-W theory. Instead, we turn to some results which the theory in its
stated form does not seem to be able to handle. Mackintosh, Dickinson, and

*The magnitude of V, will depend upon the length of the training to A+.
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Hall all report studies which investigate in greater detail the phenomena of
blocking and overshadowing (see Dickinson, Hall, and Mackintosh, 1976;
Dickinson and Mackintosh, 1979; and Mackintosh, 1971). Mackintosh (1971)
performed an experiment in which he demonstrated the effect of overshadow-
ing on the first trial of conditioning, i.e., before either component had
acquired any response strength. The R-W theory predicts that a stronger stim-
ulus should “squeeze out” a weaker one only as conditioning proceeds toward
asymptote. Mackintosh (1971) also has results which suggest that pretraining
to stimulus A can completely block conditioning to another stimulus X under
exposure to AX*; R-W predicts that Vy acquires at least some strength.

More interesting, perhaps, are the results of experiments which investigate
whether the blocking effect is weakened by changes in the US which are
designed to “surprise” the subject. For example, Dickinson et al. (1976) com-
pared the strength of conditioning to stimulus X after the following two
schedules: A*; AX* versus A*; AA**, where the double ‘+’ indicates an extra
presentation of the reinforcer (electric shock) or a stronger reinforcer in the
AX condition. The second schedule produced stronger conditioning to X.
Similar results are obtained when a single US is used in both schedules, but
the second group is surprised by postponement of the US for a few seconds
under the AX* condition. R-W can handle the first unblocking result by
arguing that the added US supports a higher associative strength; i.e., it
increases the value of A and hence provides more “room” for associative
strength to accrue to Vy. But it has difficulty with the second result [Why
should postponement of the shock increase the strength of association the
US will support?] and even greater difficulty in accounting for the unblock-
ing which results from schedule A**; AX*, in which omission of an expected
US also improves conditioning to X.

Shanks (1987) has recently emphasized that the R-W theory gives qualita-
tively correct predictions of learning curves. To take a simple case, if we plot
the degree of conditioning to a CS, A, which is invariably or partially rein-
forced as a function of the number of trials, we obtain a curve which rises
quickly at first and then levels off asymptotically to some maximum. This is
not what we should expect of an organism which utilizes the straight rule of
enumerative induction, or metrics such as AP, which rely upon relative fre-
quencies. If we assume that the organism is presented with a fair or random
sampling upon which to base its estimates of relative frequency, and if we
assume that the measured behavior (the conditioned response) is a linear
function of the degree of covariation the organism assigns to CS--US pair-
ings, then we should expect behavior (hence estimated degree of contingency)
to show rather marked variation during early trials, but centered around the
“true” or asymptotic value. With increasing trials, these oscillations will
damp down to converge on that value.
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Of course, we must distinguish the organism’s judgment of the strength of
the CS-US connection from the degree of confidence which it assigns to that
judgment. Ideally, the latter will (if relative CS/US frequencies are used to
estimate relative probabilities) increase in negatively accelerating fashion
from zero to one; so perhaps subjects conflate contingency judgments with
confidence estimates.

Shanks has investigated the latter possibility in human adults. He found
that subjects could make judgments of the causal strength of a CS and offer
separate estimates of the confidence they attached to those judgments. The
confidence estimates increase as subjects acquire more data, even when those
data lead them to rate causal strength at zero or lead asymptotically to a neg-
ative causal rating (the CS prevents the US). Thus, Shanks concludes that it
is unlikely that such conflation occurs. But he seems to assume that confla-
tion would lead subjects simply to sum their numerical estimates of causal
strength and of confidence; he ignores, for example, the much more plausible
supposition that subjects entertain a number of competing hypotheses about
causal strength, assign them varying degrees of likelihood in the light of the
data, and, forced to offer a single judgment of causal strength, make an esti-
mate by averaging hypothesized causal strengths, weighted by their respec-
tive confidence ratings (which amounts to judging the total subjective
probability that the next CS will be followed by a US; see Burkes, 1977, p.
77). This procedure would account for Shanks’ results, as would two other
strategies discussed below. All these strategies require, however, that subjects
estimate the likelihoods, relative to evidence, of various hypotheses about
causal strength; Bayes’ theorem offers one formalization of how to make such
estimates. Thus, whether the R—-W model is in this important respect superi-
or to inductive models (which posit running estimates of relative frequency
as the strategy for judging strength of contingency or causal efficacy) remains
to be seen. We turn, therefore, to a cognitive model of learning which employs
Bayesian reasoning.’

Learning Causal Contingencies: Normative Theories

As we mentioned earlier, the Bayesian theory of confirmation provides a
general model for reasoning about the strength of confirmation of a hypothe-
sis; here, we apply it specifically to causal hypotheses. An essential way in
which Bayesian reasoning differs from enumerative induction is this: enumer-
ative induction evaluates the strength of a hypothesis relative to a given body

°Carnap (1952) demonstrates the existence of a continuum of such models; here, we restrict
ourselves to the Bayesian model. For the theoretical development of another intellectualistic
model, one which requires an organism to keep a running record of events and to calculate
relative frequencies, see Granger and Schlimmer (1986).
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of data without regard to other hypotheses which might also explain—and
hence be supported by—the same data. A Bayesian, instead, always begins
with a set of mutually exclusive (and in principle, exhaustive) hypotheses,
which must compete for confirmation; if the hypotheses are competing and
exhaustive, then we can set the sum of their epistemic probabilities equal to
one. But then, each hypothesis must be assigned a prior probability; as the
data come in, this probability will in general shift, so that the best-confirmed
hypothesis at one point may be replaced by another at a later time.

This competition is in a sense analogous to the mechanism that is a cen-
tral feature of the R—W theory—namely, competition among stimuli for asso-
ciative strength. This parallel will be clarified if we show how the Bayesian
approach predicts learning curves.

Let us suppose that the task is to estimate the causal strength of a CS in pro-
ducing or preventing a US where, perhaps, the US does not always follow the
CS and may sometimes occur without it. We may, somewhat artificially, imag-
ine a subject to entertain 20 competing hypotheses. The twentieth, h,, postu-
lates a causal strength between +.90 and +1.00; that is, it predicts that the CS
is strong enough to produce the US between 90 and 100% of the time, in the
long run. The nineteenth hypothesis, h;,, assigns a causal-strength rating
between .80 and .90, and so on. At the opposite pole, h; assigns the CS a
strength between —.90 and —1.00; i.e., says that it prevents the US to this
degree.

The general form of Bayes’ theorem, which determines the degree,
P(h/eb), to which a hypothesis, h, is confirmed by the new evidence, e,
given already existing background evidence, b, is:

P(h/e-b) = P(h/b) x P(e/h)
P(e/b)

Intuitively, the idea is that the subject makes running calculations of the
values of P(h/e'b) for i between 1 and 20—these must sum to one—as each
new piece of evidence (each paired or unpaired CS and US) is collected.!©
That evidence is then incorporated into the background when the next
result is recorded; thus, the value P_(h/eb) of P(h/eb) after the nth trial is
equal to P_,,(h;/b), the value of P(h/b) after the n+1* trial (see Burkes,
1977, pp. 65-92 for details).

P(h,/b), the prior probability of h, relative to background information,
must be assigned some initial value when no information whatever has yet
been obtained, in order for the sequential calculations of its probability to

©A CS paired with a US tends, other things being equal, most strongly to confirm hypotheses
with subscripts closer to 20 and to disconfirm those with low subscripts. A CS unpaired with a
US has the opposite effect. A US unpreceded by a CS tends to raise the value of P(e/b), the
probability that a US can occur “anyway.”
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proceed. Early on, the prior probabilities of the h/s will dominate over the
influence of the evidence; but the effect of evidence, as it accumulates,
swamps that of the priors, and the hypothesis that wins the competition
approaches asymptotically the one that predicts the asymptotic value of AP.
Thus, Bayesian reasoning generates learning curves.

But what about the shape of these curves! We may note, first, that little
empirical information exists as to curve shape very early in the learning pro-
cess. (Shanks’ data, which are typical, track learning only after the first 10
trials. See however Chatlosh, Neunaber, and Wasserman, 1985, especially pp.
13-15, for data on learning curves tracked from the first trial.) Yet, such
information may be significantly indicative, e.g., of whether and how sub-
jects assign prior possibilities to alternative hypotheses.

Now suppose we make the following assumptions. We interpret the learn-
ing curves as giving us straightforwardly a subject’s best estimate of causal
strength or AP—that is, as specifying the hypotheses thought most likely to
be true. Then the predictions of the Bayesian model depend significantly
upon the prior probabilities the subject assigns to alternative hypotheses (see
also Alloy and Tabachnik, 1984). If, in our example, the subject applies a
principle of indifference to assign each hypothesis a prior of 1/20, then the
Bayesian model will not predict the observed learning curves: an initial
CS-US pair will assign h,, the best probability, although only very slightly
higher than any other hypothesis.

However, a Bayesian theory will yield learning curves similar to those
predicted by the R-W theory if we modify these assumptions. We have
already suggested that perhaps subjects’ estimates of causal strength ought
to be interpreted as weighted averages of those competing hypotheses
they regard as “live” in view of the data. Alternatively, we must consider
that subjects may not give every hypothesis equal prior weight. In particu-
lar, suppose subjects are biased toward an initial assumption of random-
ness or lack of causal connection between the elements of their experience,
giving h,y and h|; the highest priors, with the values of the other priors
tailing off to either side. This, too, will result in low initial ratings of
causal efficacy, moving only gradually away from zero or near-zero values,
if experience warrants. Such an “unfair” assignment of priors surely has
considerations in its favor: organisms which jump to assigning high causal
strengths on the basis of little data (even with low confidence) will tend
to see causal connections everywhere, especially where experience does
not afford frequent repetition (see Skinner, 1948); and they will be sub-
ject to frequent and often marked revisions of their causal beliefs.

There is yet a third—also plausible—way to interpret learning curves.
Suppose a subject’s strategy is to guess the true hypothesis as to causal
strength, but to temper that guess when data are sparse and the causal rating
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“looks to be” strongly positive or negative, so as to minimize the chances of
being mistaken or very badly mistaken. If, for example, h, is the most likely
hypothesis on the evidence, but it is only minimally more likely than other
hypotheses, one could minimize the risk of being (very) wrong by making an
estimate closer to hy. Such a conservative strategy has obvious payoffs where
significant costs attend a wrong guess.!! The existing data, therefore, do not
favor the R=W theory over any of several Bayesian interpretations. 12

1 Here, at the formal level, it becomes necessary to invoke decision theory. For a treatment of
the risk of adopting a false hypothesis, see the work of Neyman and Pearson, e.g., in Neyman
(1950). It deserves mention that learning curves represent averages over several subjects; their
smoothness can be misleading. Sometimes, individuals show sudden and dramatic increases in
learning from one trial to the next, after a number of trials which produce little learning.
Though there are mechanistic explanations of this phenomenon (see, e.g., Hilgard and Bower,
1948/1966, pp. 364-375), there are some rather natural rationalistic explanations: the individu-
al has “caught on” to the mechanism involved or to the existence of a correlation; or it has
suddenly realized the relevance of some previous learning to the problem which confronts it.

12 Baker, Berbrier, and Vallee~Tourangeau (1989) show that Shanks’ (1985) experiments con-
firming R-W predictions with human subjects contain possible methodological flaws. Baker et
al. considered that subjects might initially average experienced frequencies with prior probabil-
ity assignments. They confirmed some of Shanks’ results with an improved experiment, but did
not obtain learning curves, even though they asked subjects to give prior estimates of probabili-
ties. However, the experimental situation and manner in which these priors were elicited pro-
vide no reason to expect that subjects took their estimates of priors seriously. It may well be
that in sufficiently unfamiliar circumstances, which makes the invention of causal hypotheses
and the assignment of priors to them sheer guess work, humans resort (at least initially) to enu-
merative induction, which does not generate learning curves. The resulting probability esti-
mates derived from relative frequencies in an initial sample of experiences may in turn generate
causal hypotheses; and subjects could then “cross over” to Bayesian reasoning. We know of no
data suggesting thar this does (or does not) occur. For more recent measurements of blocking
and conditioned inhibition in human subjects using an experimental design that avoids the
flaws in Shanks (1985), see Chapman and Robbins (1990). It is worth remarking that such stud-
ies, which are designed to study the manner in which elements of compound cues compete for
predictive strength, typically ignore issues which would arise in the mind of a subject who rea-
soned in a properly scientific manner. Shanks had subjects estimate the relative likelihood that
shells and landmines would blow up tanks (in a computer simulation). Gluck and Bower (1988)
had subjects estimate the predictive value of various symptoms for the presence of a disease.
Chapman and Robbins asked subjects to use the rise in price of fictitious stocks as an indicator
of a general rise in stock prices. In the first of these cases, subjects are required to estimate the
likelihood that certain causes will be followed by a given effect. In the second, subjects must
reason from effects to causes. But in the third, one possible effect of some cause (of stock price
fluctuations) is to be used to estimate the likelihood of another possible effect of that cause.
These three cases involve different kinds of reasoning and permit different sorts of explanatory
hypotheses for what occurs when cues compete. Nor are they probabilistically symmetric: for
example, if A and B are effects of a common cause, their co-occurrence will be more probable
than the product of their individual a priori probabilities of occurring. If, on the other hand, A
and B are individually or jointly sufficient causes of a common effect, the probability of their
co-occurrence will not be greater than the product. For a discussion of these asymmetries, see
Salmon (1984). They have been used to good effect by Waldmann and Holyoak (1990) in
designing experiments to show that people do, at least sometimes, reason in terms of a hypoth-
esized representation of cause-effect relationships, rather than in the manner predicted by
mechanical/associationistic models.
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Before discussing the plausibility of the Bayesian approach on more general
grounds, we shall briefly consider whether there are experiments which would
enable us to distinguish the behaviors of R—W organisms from those of
Bayesian reasoners. Although clearly no single result could be decisive, there
are a number of experiments which are relevant to testing the two models. We
summarize here three of these, with the differing predictions made by the R—W
model and the Bayesian one.

(1) A*/X*, each trained to asymptote; then AX* to asymptote. (Then test
for strength of conditioning to A andfor to X.)

Since, on the R-W theory, the US supports a maximum associative strength,
A and X will each acquire strength at asymptote when presented separately.
When they are jointly presented, their conjunction AX acquires strength, and
since V,«=V,+V,, the associative strength of one of A and X must now
decrease to half its original value, or less. A Bayesian subject, on the other
hand, first learns that A and X are each singly sufficient to produce the US.
When trained with AX*, the subject might entertain the hypothesis that A
and X partly counteract one another (thus explaining why the US is no
stronger than before); but the new training would only very weakly disconfirm
the hypotheses that A and X were singly sufficient for the US, in favor of the
alternative that each is only weakly effective (so that together they are very
effective). Though an eligible hypothesis, this would be rendered very unlikely
by the previous long runs of A* and X*.

(2) Three groups are trained as follows, and the rates of learning under the
condition CS* are compared:

(a) CS—; CS*
(b) CS*
() CS-CS, ...CS-CS ; CS*

Group (a) is given preexposure to some appreciable number n of occur-
rences of the CS, unpaired with any US. According to the R-W theory, the
absence of a US in this condition means that A=0; hence, learning under the
subsequent CS* condition ought to match thar of group (b).!* But a Bayesian
placed under schedule (a) would first learn that the CS did not signal any
change in background conditions, and would subsequently have to unlearn
that conclusion—hence the learning rate under CS* should be better under
schedule (b) than under (a). There is, however, another mechanistic theory,
due to Mackintosh, which would agree with the Bayesian prediction: on that
theory, preexposure to a CS unpaired with any US decreases the amount of
attention the subject pays to the CS; and learning rates are dependent upon

Yl is already known that conditioning to a CS is slower under schedule (a) than under (b).
Wagner and Rescorla (1972) modify the R-W theory to accommodate this fact by allowing
that the CS- trials in (a) lower the value of o, in effect, they concede that unreinforced CSs
may lose salience by ceasing to attract attention.
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the degree of attention a CS commands. But the attentional theory holds that
attention is a function of the extent to which the CS signals unexpected subse-
quent events. Thus, if the CS is sequentially paired with n novel CSs as in (c),
attention ought to be maintained, and learning rates for CS* under schedules
(b) and (c) ought to match. Not so for a Bayesian organism: it learns on sched-
ule (c) to expect the unexpected when CS occurs; thus, the subsequent regular
pairing of CS with + ought to be learned more slowly than for a subject placed
in condition (b).

We know of no one who has performed experiment (1) above, or compared
case 2(c) with 2(b); but, the following test (3) has been performed with rats—
though not with a view to comparing the Rescorla—Wagner and Bayesian models.

(3) Train three groups of rats as follows, and then test the degree of condi-
tioning to the stimulus X:

(a) AX*; AY
(b) AX*
(c) AX*; A~

We recall that A*; AX*, the reverse of (a), is just the blocking experiment.
For a Bayesian (who in effect uses Mill’'s method of agreement here), the order
of presentation of A* and AX* should not matter; in either case, conditioning
to X will be lower than for group (b). Similarly, schedule (c) provokes the
employment, in effect, of Mill’s method of difference; a Bayesian will be more
strongly conditioned to X under this schedule than under either (a) or (b).
But the Rescorla—Wagner theory predicts equal conditioning to X in all three
cases—thus, the reversed order in (a) of A* and AX* will eliminate blocking.
To see this, we must see that the associative strength of X in (a), (b), and (c),
once acquired, is not affected in any way by subsequent presentations of A* or
of A~ these serve only to change the associative strength of A.

A comparison of schedules (a) and (b) and (c) in (3) has been reported by
Kalat and Rozin (1972) for rats. Kamin (1969), among others, also working
with rats, compared schedule (a) to (b). In both cases, the results support the
Rescorla—Wagner theory over the more cognitive Bayesian theory.

Non-Bayesian rats aside, there are a number of further issues which a
Bayesian theory must address. Thus, for example, it seems plausible to handle
overshadowing phenomena by assigning higher priors to hypotheses which
assign the causal potency of a compound CS primarily to the stronger com-
ponent(s). There is also the question of what determines the competing
hypotheses a subject entertains when confronting a given set of data. This is
a difficult question; here, we offer just two principles which we believe have
psychological plausibility.

1. Confronted by a US which is statistically paired with one or more simple or complex
CSs, a subject will entertain hypotheses which attribute causal power to the con-
stituent CSs, singly or in the various combinations found within complex CSs; unper-
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ceived causes are not hypothesized except when USs unpaired with any observed CS
oceur.

I1. The possibility that each of two or more elements of a complex CS is alone causally
sufficient to produce the US is discounted unless there is independent evidence of this.
Discounting, as this is called, is a kind of simplicity postulate: crudely, it enjoins multi-
plication of causes (or causal strength) beyond necessity. There is some empirical evi-
dence for this bias against causal overdetermination (see Sedlak and Kurtz, 1981).

We have provided here only a very partial sketch of a Bayesian approach
to causal thinking. Rather than attempting to develop it further, we believe
it will be most useful to conclude by addressing some very general issues
which bear upon the plausibility of mechanistic versus cognitive explana-
tions of the capacity to apprehend causal connections.

It is obvious that Hermissenda do not apply Bayes’ theorem or even calcu-
late relative frequencies. But, to be sure, neither do human beings—except
in the most rarified of contexts. Not even experimental psychologists and
others trained in the relevant statistical techniques will engage in anything
so complex as the calculations just outlined, except when they need to pub-
lish the results of their studies. Thus, initially, it appears that a Bayesian the-
ory will have no plausibility as a realistic account of the acquisition of causal
knowledge in ordinary circumstances—even for humans.

Does it follow that some mechanistic model (whether it be the R~W theo-
ry or some alternative) must be correct? Of course not. What we ought to do
is to use models such as the Bayesian one as heuristic devices in the construc-
tion of simpler, qualitative inductive strategies which can more reasonably be
imputed to humans and perhaps to some lower animals. It is easy enough, for
example, for mathematically naive human subjects to appreciate the qualita-
tive features of Bayes’ theorem—e.g., that results, predicted by the hypothe-
sis as very likely, tend to confirm it, unless those results were very likely to
occur in any case. A variety of other inductive rules can be formulated, more
or less powerful, which may capture the reasoning strategies, where reasoning
is present, which lead to causal beliefs.!4

It is fair to say that much remains to be discovered about the processes by
means of which causal relations are apprehended and about the conditions
under which these processes are reliable. The role of tactual perception of
forces in causal reasoning, the development of causal reasoning in children,
and the dynamics of belief formation and revision under the influence of
increasing experience: all these and much else are as yet poorly understood.

" Some of these may be correct, if rough, and others fallacious, but effective in limited con-
texts. See, in this connection, Shaklee (1983). Einhorn and Hogarth (1986) review a number
of theoretical perspectives on rational causal attributions and review relevant empirical studies.
Cheng and Novik (1990) make use of what they regard to be a computationally realistic form
of Mill’s methods to predict the causal attributions of human subjects.
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Indeed, it is not easy to discriminate experimentally between the action of
mechanical processes and intellectual ones in rendering organisms sensitive to
the causal features of their environment, for, as we have seen, rather simple
mechanisms are remarkably able to mimic the results of intelligent thought.

Measured against such norms as Mill’s principles or Bayesian reasoning,
lower animals in many situations perform remarkably well. (For a recent
comparison of human versus animal causal learning, and discussion of
mechanical versus ratiocinative mechanisms, see Wasserman, 1990. See also
Gluck and Bower, 1988, for a discussion of the ability of adaptive networks to
achieve computer modelling of learning phenomena.) However, rats, at least,
perform poorly by these standards in other situations, as we have just seen. It
would be most interesting to learn how well higher animals—e.g., monkeys
and mathematically naive humans—perform such tasks. According to
Shaklee (1983), they often do none too well. If we judge the reliability of an
organism’s discrimination of causal relations by how well its performance
matches that of a Bayesian or even that of a reasoner using Mill’s methods,
we may find that humans, in their everyday affairs, fall well short of the
ideal. Nevertheless, sophisticated calculations are reliable and effective only
to the degree that they can be executed without error and quickly enough to
serve our ends. Perhaps Hume was not far wrong when he suggested that
nature would have been foolhardy had she left us to rely on so weak and falli-
ble a faculty as that of reason for the purpose of acquiring causal beliefs.
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