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Internal Representations — A Prelude for Neurosemantics
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Following the concept of internal representations, signal processing in a neuronal
system has to be evaluated exclusively on the basis of internal system characteristics.
Thus, this approach omits the external observer as a control function for sensory inte-
gration. Instead, the configuration of the system and its computational performance
are the effects of endogeneous factors. Such self-referential operation is due to a
strictly local computation in a network. Thereby, computations follow a set of rules
that constitutes the emergent behaviour of the system. Because these rules can be
demonstrated to correspond to a “logic” intrinsic to the system, it can be shown that
the concept of internal representation provides the basis for neurosemantics.

What are the basic structural properties of a nervous system?! The neuro-
anatomist Gaze put it this way: “nerve pathways always run from here to
there” (1970, p. 1). The nervous system is no statistical amalgam of integra-
tive devices but is a topologically ordered system with local characteristics
(Braitenberg and Schiiz, 1991). Thus, it seems reasonable to start from this
view in order to reconstruct the integrative actions of the nervous system.
Such an approach, accordingly, has to work with strictly local computations.
Consequently, information transfer in such a system should not be described
using the idea of a representation based on an external evaluation of informa-
tion transfer (Shannon and Weaver, 1949) but should follow the approach of
an internal representation (Rusch, Schmidt, and Breidbach, 1996).

According to the concept of internal representation, information is to be
evaluated on the basis of system-intrinsic variables. Thereby, a subjective
probability is characterized which defines the effect of an input signal not
with regard to the transformation of an objective probability, describing the
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actual configuration of the physical surroundings of the receiving system, but
to the internal states of this system (Breidbach, Holthausen, and Jost, 1996).

What is this subjective probability? In neuronal networks, a subjective
probability is expressed by the instantaneous activation mode onto which an
input is superimposed. What does this mean? Local coupling characteristics
determine pathways of activation. These do not result in a sampled activity
mode, where the overall value of the system’s activities is registered, but
elicit bulks of periodic oscillations, whose frequency is determined by local
coupling functions that are in turn determined by the structural charateris-
tics of nervous tissues. Thus, the system’s topology results in a coupling of
local dynamics that determine activation patterns characteristic for certain
topologies (Holthausen and Breidbach, 1997). An external signal will be
superimposed on the resulting activity landscape. Its effect is not directly
correlated with the intensity of the input, but depends critically on the situa-
tion of the system in which it fits: either it will match a certain oscillation,
or it will not. If it fits in, it will strengthen a certain activation pattern; if it
does not, the input will either vanish without any effect, or it will change
the range of activations of the system. Consequences of such a behaviour
might be a re-shaping of the bassins of attraction and, thus, a new oscillation
mode of the system will develop. Looking at the attractor configurations,
such a change will be expressed in a shift of relative distances between the
centers of activation. The elements of such centers will change relative posi-
tions, thereby altering the metrics of the system.

A system that reacts in such a way is self-referential. Its internal metric is
provided by relative distance functions of cluster elements (Holthausen,
1998; Holthausen and Breidbach, 1999). This internal metric preselects any
input situation that is of relevance to the system: only those changes that
influence local relations in such a way that not only internal cluster configu-
rations but relative cluster distances that will be affected, are selected.
Thereby, the physical description of significant parameter constellations in
such relative distance functions allows us to establish a set of rules that the
system is going to follow in response to an input situation.

It is argued that one of the basic conceptual schemes of cognitive neuro-
science, that of associative psychology (Breidbach, 1997a), can be reformu-
lated in physical terms. The former concept as outlined by James Mill (1869)
and later adopted by neuroscientists like Sigmund Exner (1894) and Donald
O. Hebb (1949), gave only a general idea about a putative mechanism of
brain behaviour. Nevertheless, the idea of Hebb to model the brain using the
concept of a neuronal net proves highly successful for cognitive neuro-
science: it forms the basis for a neuroscientific interpretation of the actions
of neuronal networks. The problem, however, is that, so far, neuroscientific
concepts that aim at an analytical interpretation of brain behaviour and the
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concept of an associative psychology succeed only in a demonstration of
structural analogies in their descriptions. The two levels on which those two
sciences interpret brain behaviour are not directly interchangeable
(Breidbach, 1997b). To correlate these two levels one would have to formu-
late a theory of the mind/brain, which up to now — in spite of the discus-
sions in philosophy of mind — is not established.

Here, however, another way to gain access for a correlation of associative
psychology and an analytical theory of brain functions is proposed. The idea
is to transform the concepts of an associative psychology into a physical for-
malism that will allow an analytical description of what association really is.
By that formalism the connectivity of an associative system will be described
in an operational way, outlining how far a certain association can be
described in terms of functional connectivities of a parallel distributed
system. Such a formalism has to establish the rules of associations as physi-
cally defined actions of the elements of a nervous system. Such an approach
does not lead to a naive reductionism. Using a physical formalism, it intro-
duces a new language into which the descriptions of both levels, the physio-
logical and the psychological level, can be translated. Thus, such a formalism
succeeds in a coupling of the two levels of description. In the fomal language
offered by physics, it can be precisely demonstrated how far the two levels of
description really are correlated — or where they allow mere analogies.

Consequently, a formal treatment of the idea presented is not a matter of
choice but is a necessity: The success of such a formal treatment has to be
demonstrated in its details. Here, it is argued that the language that allows us
to describe the mechanisms of cognition is physics.

Subjective Content

As has been described elsewhere, a self-referential system preselects rele-
vant activity profiles (Becker, 1996; Bell and Sejnowski, 1995; Linsker, 1997;
Nadal and Parga, 1994). In such a situation, only a subset of input signals
will be effective in eliciting massive system responses (Abeles, 1991). Inputs
affect the system not simply by their absolute intensities, but by their relative
strength. The input is superimposed on the internal activation pattern of the
system (Vaadia, Haalman, Abeles et al., 1995). Accordingly, objective proba-
bilities (p,) are insufficient to describe the computational processes within
such a self-referential system. The system is characterized by system-specific
local coupling characteristics, e.g., the interneuronal connections that are
specific for the system. Any stimulation of the system will be propagated
within this network and any stimulation of the system will be computed
according to the preestablished wiring pattern. At any time, furthermore, the
system forms an internal activation mode resulting from the overlay of
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former activations. Thus, in order to describe the information that the
system works with, it is not enough to describe a function by which signal
patterns of the external world can be transformed within such a system.
Because the actual activation pattern of the system is a function of the acti-
vation triggered by the stimuli, the preexistent activation pattern and the
local coupling characteristics of neurons, one has to incorporate a variable
that describes the characteristics internal to the system. This has been done
by introducing subjective probabilities (q;).

The idea to incorporate such internal system characteristics in theoretical
neurobiology dates back to 1972. Classical information theory only allows a
comparison of a stimulus acting on the system and the output of the system
refers to the input (Shannon and Weaver, 1949). Accordingly, one has to
know what the input is like. In a typical situation of pattern recognition in
the brain, the brain does not know, however, what it is looking at before the
pattern has been recognized. Classical information theory had to be
extended. This was done by the introduction of subjective probabilities into
information theory (Pfaffelhuber, 1972). But, in fact, the mere incorporation
of a new type of variable did not solve the problem. What had to be done
was to define an internal measure for the activation modes of a system.
Important steps in this direction were published by Palm (1981) and Linsker
(1988). Palm (1981, 1982) described a function that allowed an approxima-
tion of the internal charcateristics of a neuronal network: a system is charac-
terized by the complete number of activation modes it can perform. Because
of internal characteristics (weighting of coupling characteristics of an ele-
ment, threshold level, etc.), each mode will occur with a probability p,. The
surprise function (a physical characterization of the novelty of a message)
measures the deviation of the actual probability of a system’s activation mode
and the putative p, by which the system is characterized. However, such
system characteristics depend on external evaluation.

The question then is whether it is possible to find a measure for the charac-
terization of system behaviour based on internal characteristics. This would
allow a definition of information using only internal system characteristics.
Shannon and Weaver (1949) have shown that the information content I_ of an
event x with the objective probability p,_is given by Ix = — log (px). Kerridge
(1961) and Bongard (1970) demonstrated that a subjective probability can be
expressed as the representation of the computational predispositions of the
system, by using a measure of the subjective content I = — log (q,). Thus, the
information content of a set of events x, is the average information per event,
the Kerridge-Bongard entropy Hyp, = IZ Pyciy log (a,q))

The subjective probabilities q; = q,, are the basic variables for the
system’s hypothesis about an external world. Applied to neuronal network
theory, the subjective probabilities g, are defined as functions that depend on
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network parameters (e.g., synaptic weigths or threshold values). The adapta-
tion of the system was described by Holthausen (1995) as the maximization
of Hyy using only internal system characteristics. Thereby, the degree of opti-
mization is measured with reference to the pattern of activation assumed by
the system in response to a homogenous external world. When using Hyp to
characterize local coupling functions, measures for the characteristics of self-
organizational features can be described. The topology of the system, there-
after, allows a quantification of Iy. In the model presented by Holthausen
und Breidbach (1997), maximizing of local information transfer leads to a
topologically ordered map of a neural network, whereas the increase of global
information fails to do so. The adaptation of the synaptic weights in a self-
organizing network, thus, can be described exclusively on the basis of inter-
nal variables. Accordingly, these allow a representation of the external world
as it is available for the system. The house beetle in a roof construction is not
suspected to possess an intrinsic “expert” system for objective features of its
habitat (Breidbach, 1986, 1990a). The beetle just has to behave according to
internal representations that allow it to react similarily in response to roof
beams, old pine wood or telegraph poles.

As has been shown, neuronal networks can be considered as self-determin-
ing systems that constitute their own subjective probability distribution by
developing an individual topology that predisposes the internal weighting of
inputs that enter the system. The subjective probability distribution is re-
adjusted in response to an input signal. Integration of sensory information
continually changes the system’s response characteristics. The question is
whether the system’s dynamic thereby follows certain rules and, thus, out-
lines some kind of an internal logic.

What has been demonstrated so far? The concept of an (external) repre-
sentation, where the system already has to know what it is going to recog-
nize, is insufficient for an analytical definition of association. The latter
concept allows us to establish a model for the external decription of
behaviour as it provides an expert system into which all known aspects of
neuronal control of animal behaviour can be integrated. If this model proves
successful, it demonstrates that every relevant mechanism to understand the
neuronal basis of a specific behaviour can be outlined. Thus, the model gives
information about the completeness of a neurophysiological description. It
will, however, not necessarily represent the actual machinery by which the
animal brain is working. The same scheme of action can be performed by
various neuronal architectures (Breidbach, 1999): comparative neurobiology
has already demonstrated this (Breidbach and Kutsch, 1995; Kutsch and
Breidbach, 1994). Accordingly, to understand how the brain works, one has
to look inside the system and describe its internal characteristics (Ziemke
and Breidbach, 1996). An analytical description of a system’s intrinsic
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behavioural pattern can be presented: such a description specifies rules for
any parallel computing system with local connectivities and, thereby, also for
the brain. To understand the validity of such an approach, its analytical
details are of utmost importance — even in a philosophical discussion.

Local Rules for System Behaviour

Via the introduction of local entropy measures, relative distance functions
are implemented into the self-referential system: an input changes the actual
local activity distribution. There are two possibilities: either the activity
landscape corresponding to a part of the system described is invariant under a
certain input, or it is not. If it is invariant, the input is without effect on the
system; it is just incorporated into the normal oscillation of activity in the
system. If it is not incorporated, however, it will change the local coupling
functions: it changes the weight vectors of the elements in its surroundings.
Because these, likewise, are coupled to neighbouring areas, an eventual effect
is propagated — the relative coupling functions of these elements are
changed. By measuring the distance to which such an alteration extends (the
partition of the phase space affected by such an activation), the relative
value of an input for the system can be calculated.

Yet, such a system is a parallel computing system. What does this mean? A
sequential machine, like a Turing automaton, will work out a signal recogni-
tion procedure by following a line of decision processes. In a parallel compu-
tation device, the situation is different. In each instant, activation is
dispersed from various components according to their local coupling charac-
teristics. This may result at the second or third step of processing in a com-
plex superposition of activations from various parts of these computing
elements. The relative effect of one single activation on the system’s
reactibility, thus, has to be described regarding the complexity of the system’s
activation modes. Accordingly, the relative effect of one input on the local
activity distribution is registered, measuring its relative effect on neighbour-
ing areas. The effect of an activation, thus, is expressed by the resulting
overall distortion in the sequence of locally coupled activity patterns
(Holthausen, 1998).

How is the impact of a certain shift in the activation mode of the system
to be interpreted? It is necessary to find a relational measure that allows
detection of symmetries in a dynamic constellation of changing activity
parameters. This can be obtained when it becomes possible to define a mea-
sure that describes how the cluster elements interact with each other. A set
of coupled elements is called a cluster. Activity modes that establish a
stricter coupling of elements, thus, can be regarded as activations of such
clusters. Clusters may overlap in some of their elements, but each cluster is
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characterized by the fact that there is an activation of all elements in one
cluster if one of the cluster’s elements is activated.

Each cluster element is characterized by its relation to other elements. The
elements constitute a cluster when their correlations are significantly closer to
each other than to non-cluster elements within a relevant time period. The
variation of the local characteristics, thus, must not to be computed as an abso-
lute variation in the metrics of such a coupling group, but as a relative one.

Any signal implemented into the system might distort the former distance
values of neighbouring elements. This, however, must not lead to a complete
alteration of relative local distances. The analytical definition for clusters,
accordingly, has to be based on a measure of the cluster’s relative distance
functions. Such a measure must allow the computation of relative affinities
throughout portions of massive compression or extension of the phase space
of activity patterns of a system.

Learning Rules

In applying the principle of local computation, Holthausen (1998) intro-
duced a new learning rule that allowed the study of avalanche effects in local
dynamics. His idea was to compute optimal binding characteristics of local
elements as functions of activity couplings. Thus, for each moment of a
model run of a locally organized system, the coupling functions can be
expressed as a transformation into a vector space. One then can form a dis-
tance matrix where elements are defined by their relative positions. During a
model run, such a matrix that includes all possible coupling functions may
oscillate without changing the relative distributions of cluster elements.
Looking at the networks of cluster distributions, segregated and aggregated
elements can be demonstrated. Thus, a relative measure of coupling intensi-
ties can be established (a) for a description of the instantaneous state of the
system, and (b) for the characterization of the system throughout a certain
period of time. Thereby, clusters again are not defined by the absolute posi-
tions of their elements, but by the relative distances of these elements.

Accordingly, this approach does not refer to an external scale. If in the
notation developed so far rules for the interaction of system elements can be
analytically described, the principal aim envisaged in the problem exposition
is fulfilled. Information in a system will no more be defined in regard to the
accuracy of representations of an external stimulus, but in regard to the
internal activation of the system. Identification of a signal, thus, does not
refer to a fixed, externally mediated parameter configuration but is achieved
by the dynamic situation of the system itself.

Within a cluster, a central group of cluster elements can be defined that
shows interactions only with other cluster elements. Furthermore, a border
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group of elements is characterized. These are not exclusively coupled to ele-
ments of only one cluster. There can be a tendency of such border elements
either to become integrated in or to be separated from a certain cluster.
Thereby, even a hierarchy within the set of clusters can be established: those
clusters that lose border elements to another cluster can be regarded as being
dominated by that cluster et vice versa.

The learning rule by which the behaviour of such a system can be
described is defined by the frequency of adaptations (Khaikine and
Holthausen, 1999). The latter is determined by an objective probability
vector: in Holthausen’s (1998) approach this represents only the coupling
between a given input distribution and a mapping function — only the rela-
tive distances of two maps are computed. The resulting function is self-refer-
ential, as it depicts only characters intrinsic to the system.

The Holthausen algorithm presents not only the introduction of order
characteristics into a dynamical system, but is successful in establishing rules
that allow the identification of classes in the activity patterns of neuronal
networks. The performance of the system is implemented in the dynamics of
its local topologies: the relation of single cluster elements to each other. A
certain cluster, thus, can be defined in such a way that a relative distance
matrix is established that gives weighting factors for the correlation of the
clusters to each other. Thus, it is possible to express degrees of distance
between certain clusters. By a simple Boolean operation in the vector space
characterizing the distance functions of every cluster element, clusters that
overlap (to a certain degree) in the activation of other elements can be iden-
tified. By a description of the relative distances of the elements, the relations
of each cluster to all other clusters are expressed. The rules for the interac-
tions of the clusters, thus, are defined by the microdynamics of their ele-
ments. These elements are attractors, defined by the local dynamics of the
system. Accordingly, the gross characteristics of the system’s behaviour can
be traced down to the level of the system’s local coupling dynamics, and
described in the language of physics.

ules for System Intrinsic Interactions

The relation of two elements is described by a distance function. The ele-
ments are part of a certain cluster or they are not. When the formation of
such a cluster is changed, the position of an element with regard to such a
cluster can alter. If the history of the various cluster-configurations in which
two elements were found is registered, the dynamics of the cluster relations
can be analysed. An element can be part of two clusters a,b showing a chang-
ing tendency of cluster attribution thoughout a model run. That changing
attribution can be measured. This analysis can be done for each element of
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cluster a and cluster b, resulting in a matrix detailing not only the relations
between elements of cluster a and b but also the overall distances of both clus-
ters. Furthermore, in an analysis of the dynamical behaviour of clusters, a
simple analysis of the growth or shrinkage of the numbers of elements gives
information about the relative intensity of certain cluster couplings. The
simple rules that can be found by an analysis of the relations of certain cluster
elements do not allow only the identification of similar elements but allow us
even to establish degrees of similarities. Such an analysis will provide to us
the framework for a logic for the behaviour of neuronal networks. To under-
stand this properly, one has to understand what a cluster element really is.

We do not look at the coupling functions expressed in the structural organi-
zation of knots and grids in a neuronal network. The analysis performed works
on a more abstract level. A cluster element reflects underlying knot activa-
tions, but it is not identical with them (Holthausen and Breidbach, 1997).
An element, as it is presented here, represents the underlying coupling and
activation modes of a network area (eigenvectors of activity patterns). The
activity pattern of the system may be expressed by varying local coupling
functions of neurons and by varying time characteristics of the actual binding
functions. All these varying activation patterns elicit a local dynamic that can
be studied in an analysis of attractor dynamics (Holthausen and Breidbach,
1999). The topology of the dynamical system is, thus, not the actual network
activity pattern, but the series of attractors that were elicited by these activa-
tion modes. In consequence, relations between two cluster elements do not
correspond directly to transformations of weighting functions for synaptic
intensities and threshold values. The relative distances measured in our
approach describe the attractor dynamics. The cluster constitutes that attrac-
tor. Accordingly, the cluster will change its actual metric, if it is compressed.
The cluster will not lose its relative characteristics, however, if it can be
described as isomorphous (to itself) throughout its eventual transformations.

This sketch demonstrates why it is advantageous to work with such a com-
plicated procedure that avoids absolute scaling of activation or coupling
characteristics of or within system activation patterns. Using such clusters,
even deformed attractors can be identified. Thus, such an analysis allows the
detection of similarities and dissimilarities even in compressed or extended
partitions of phase spaces. Consequently, the formalism developed does not
depend on fixed parameters but is invariant under changes in local parameter
constellations — the tolerated degrees of such variabilities are defined. Local
fluctuations that shatter the constellation of cluster elements are identified
as such a limitation. These do not depend on fixed parameters, as the latter
vary with respect to the actual overall distribution of activations within the
system. The criteria gained for isomorphous structures, thus, are not simple.
Isomorphy, accordingly, is a relationally defined constellation — isomorphs
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are such constellations that can be implemented in an identical cluster. The
cluster is defined by the relative positioning of its elements. The question,
thereafter, is, up to what degree are two transformable modes in the develop-
ment of one cluster no longer seen to reflect an isomorphous constellation.
This situation is given when the transformation can only be followed in one
direction, that is, in a bifurcation (Pasemann, 1995).

Accordingly, the elements of the logic of relations presented are not
strictly defined: only a relational characterization is given. The picture
depicted here describes a network of interactions resulting in an interwoven
grid of vector functions characterizing different activity states of local areas
in the system. It has been shown that the resulting topological characteristics
of system activation patterns suffice to characterize the internal dynamics of
the system (Holthausen and Breidbach, 1997).

Clusters and Internal Logic

A cluster C of elements e is defined throughout a time period. A logic of
relations should allow the characterization of dynamical changes over various
time periods. Such a logic is based on considerations about the interdepen-
dencies of elements. Even the definition of identity has to be formed in a
relational manner. Thereby, the problem is that elements show continual
fluctuations of their absolute positions in the phase space. An absolute scal-
ing would not allow us to define self-identities of such dynamic elements.
How then, can the trace of such an element in phase space be followed? To
do that, a relative measure, by which the position of an element can be
defined, has to be introduced. Its definition has to refer to relational charac-
teristics: identity of a set of elements over a time period is defined in refer-
ence to other elements.

Hereby, a relative coordinate system is established whose dimensions vary
according to the state of activation of the complete system. Consequently,
the traces of single elements can be followed throughout the history of the
system (Holthausen, 1998).

An alteration in the absolute scaling of the relative positions of various
elements in such a system — as an effect of an incorporation of a new ele-
ment in the system — does not distort the principal topology of the system:
the system is defined by the relative positions of its elements to each other.
The introduction of a new element changes the system’s intrinsic relations
and, thus, affects — more or less — all elements. If the change induced by
such an introduction is a considerable one, the system is affected in each
part; consequently, it will not fade but follow a common trend. Such trends
can be evaluated by looking at various physical characteristics of the system

(Holthausen and Breidbach, 1999).
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James Mill (1869) had outlined how in a network of interwoven oscillators
within the brain sensations overlay each other and, thus, modify the topol-
ogy of the signal processing system. His approach is suggestive, especially,
when it is transformed into a functional morphological concept in neuro-
science where the brain is described as a network of interwoven neurons.
Such an idea of neuroanatomy was already established in the last decades of
the nineteenth century, where — consequently — Mill’s concept found
tremendous respect (Breidbach, 1997a). Nevertheless, in those years the
rigour of a physical theory which presented a mechanism by which associa-
tive features really could be understood was lacking.

It must be demonstrated how a new input can be integrated in a system.
Thereby, it should be made clear that a new input will not only add one par-
ticular quality into the signal detecting system, but that it will optimize the
general resolution capacity of the system.

Let us describe the system behaviour in terms of relational characteristics.
By the implementation of a new element into the system, the scaling of rela-
tive distance functions in the system is magnified: there will be one further
clement in each matrix by which the functional characteristics of the system
are described. Accordingly, the accuracy by which the relative distances of the
various elements in the matrix are expressed, is improved. Thus, when a new
element is introduced, the relations of the elements to each other will be
automatically re-evaluated regarding the new matrix functions. Consequently,
by introducing more and more elements in such a relationalistically character-
ized system, the system will gradually optimize its accuracy in separating more
closely related clusters. Mathematically, this can be described by formulae for
the capacity and complexity of the system (Jost, 1998).

The rules for the combinations of clustets in a system can be described.
These rules allow the outlining of a logic of system activation modes. As
these can be traced down to the level of single elements (as forming part of
the cluster), a neuro-logic would be established, at least in principle. Thus, a
framework for a physical theory of cognition would be secured. Below, formu-
lae are sketched that might establish such a framework. It is reasonable to
follow the technical details, as these outline whether and how far such a
framework can be established.

Internal Logic

An activation x in the system is reflected in a complex relation, by which
the event x is transferred throughout the network of related elements. After
a time period the resulting activity pattern of the system cannot easily be
traced back to the situation at the beginning of the period. The matrix of
distances has changed completely. The original parameter constellation char-
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acterizing x at the beginning of signal processing is lost (Holthausen, 1998)
— a static definition of identity is useless in such a dynamical situation.
Identity is found within an element’s activation when the same relations
between the elements of a certain cluster are expessed.

In the dynamical system, each element continually integrates new activa-
tions. Thereby, there is a kind of continuous check of relational characteris-
tics within each of the elements. In the central region of a cluster the
hierarchy of relations within the cluster elements is conserved during the
time of computation, whereas border elements tend to become temporarily
part of another cluster.

The attachment of border elements to cluster C during a time interval
depends on the relative probability of coupling rates. If the element has a sig-
nificantly higher binding rate to the elements or part of the elements of one
cluster, it is part of this cluster. The less significant such coupling characteris-
tics are, the less obvious is the attachment of such an element to a particular
cluster.

Two clusters interact when there are some elements shared by both. If the
number of shared elements increases, two clusters become more similar. Two
clusters which do not share central elements are different. Different clusters
which share all border elements are similar. Similarity decreases with the
decrease in the number of shared border elements.

By an analysis of such rules of system dynamics, an operationalistic
approach to logic becomes feasible. In a first step, only an elementary logic
including the junctors “and,” “or,” “implication,” and the all-quantor (x is
true for all elements) is aimed at. As Frege (1966) has outlined, logical
operations can be reduced to these basic procedures. It is possible to
describe such a logical scheme for relations between clusters. Elements of
the logical operations, thus, are relations between clusters and not only
states of certain clusters. )

If cluster A and cluster B are different and an activation of cluster A is fol-
lowed by an activation of cluster B and, likewise, an activation of cluster B is
followed by an activation of cluster A, the situation can be regarded as an
“and” function. If cluster A and cluster B are different but share border ele-
ments, and one of these clusters is activated — but this activation is never
followed by activation of the second cluster — this can be regarded as an
exclusive “or” function.

If cluster A and cluster B are different and an activation of cluster A is fol-
lowed by an activation of cluster B, but an activation of B does not activate
cluster A, this can be regarded as corresponding to a logical implication.

If within a number of clusters A, a certain cluster is activated and such an
activation is followed by an activation of all clusters Ay this can be regarded
as corresponding to an all-quantor operation.
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In this way, a calculus is established that represents a kind of logic in paral-
lel computing systems. Similarity, difference, isomorphy, hierarchy and impli-
cation became definable in terms of network activity modes. Thus, a
predicate logic becomes feasible. In addition, Holthausen and Breidbach
(1997) demonstrated that a system’s topology defines subjective contents:
rules describe the basic semantics of the elements that constitute a system.
What has to be proven, however, is that this approach is sufficient to repre-
sent categories by which internal data are ordered in such a way that they
form a semantic system. Of course, the categorization of a stimulus represen-
tation is the effect of a system’s intrinsic mechanisms (Breidbach, 1997a).
Also demonstrated is the close correspondence of the behaviour of such a
system to a basic outline of associative psychology such as that described by
Mill (1869). What is lacking is a complete mathematical description of such
categorization algorithms. Model runs, however, demonstate that the
described framework of a neuro-logic “works” (Holthausen, 1998): using such
algorithms, it is possible to implement self-organizing cluster functions by
which a system forms its individual topology (Holthausen and Breidbach,
1997).

Internal Logic and Neurosemantics

The rules presented here are physical characterizations of the behaviour of
parallel computing systems. Following the concept of internal representa-
tions, within the analysis of network dynamics, a framework of basic logical
functions is obtained. The physics applied reflects the principal characteris-
tics of neuronal network organizations: their local characteristics and the
highly stereotyped morphology of neurons. A physical model that reflects
these central attributes of natural neuronal systems is sufficient to establish a
kind of system intrinsic logic.

There is one striking parallel in the analysis of the physical model here
presented and in the psychological concepts that dominated nineteenth cen-
tury brain physiology. The historical development of the concept of an asso-
ciative mind that was generally agreed upon at the time of Sherrington and
his followers cannot be described here in detail (see Breidbach, 1997a). But
what is demonstrated is that Mill’s system of associative psychology is analo-
gous to the descriptions of the behaviour of a parallel distribution system
with local characteristics. According to Mill, the first effects of an impression
in the brain are not a proper representation of the physical world. The effects
are described as being the outcome of an interference of inputs with the
internal activity mode of the system {Breidbach, 1996). Mill, and later the
physiologist Sigmund Exner (1894), saw signal identification and association
as the result of endogeneous brain activation modes. Signal inputs elicit acti-
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vation in certain neuronal pathways; these are superimposed on internal
oscillations and, thus, cause more complex reactions in brain tissue. The
result is a complex coactivation of signal pathways established by former
impressions. If such coactivations can be performed in different modes, for
example, if an activation corresponding to red is elicited, likewise, by a
cherry and a rose, the coactivated attractor is likely to be regarded as a gen-
eral attribute (in this case, the attribute red) of a set of input situations.
Thus, Mill presented a coherent picture of a possible physiological back-
ground of cognitive actions like identification, association and even memory.

The relationalistic definition of the system, employing internal representa-
tion, presents the description of associations in an analyrical way. Here, enti-
ties like “cherry” and “apple” are regarded as a cluster of elements. In the
technical representation of such an associative system, as has been described
in the present paper, elements correspond to attributes putatively activated
by various clusters. The relative distances of these elements correspond to
the divergence of various clusters. The introduction of a new element into
such a relative mapping configuration may rearrange the cluster distribution
and may even extend the general resolution capacity of the system. Rules are
outlined by which regularities in the cluster interaction are to be formalized.
These rules show that an elementary logic can be implemented in the activa-
tion modes of the system. By outlining the rules of cluster interaction in such
a system its semantics are described.

A stimulation of elements in the parallel computing system results in a
temporary shift of its activation modes. These activation patterns are pro-
cessed in the interneuronal connections. If an activation shift is stabilized
over a longer time period, it will establish new modes of local interactions.
These dynamics are described as shifts in the activity distribution of the
system shown as oscillation patterns in a phase room. A single oscillation
pattern corresponds to a single attractor. Since the elements of the system’s
activation modes can be physically defined as distinct attractors, physically
the system is described by its attractor configuration. A complete under-
standing of what is going on on the system level, however, has to describe
transient dynamics, that is, the microdynamics underlying the attractor char-
acteristics. James Mill had envisaged such a physical description and was able
to develop his idea of coactivations as a principal scheme for an understand-
ing of the physiological basis of associations — thereby he speculated about
the origins of the categories we use in our verbal analysis of the world as well
as ourselves (Kurthen, 1992). Mill portrayed a relationist’s view of the
mental representation of the world. The mechanisms he proclaimed as being
effective were the associations.

Caution has to be applied, however, when trying to parallel a modern
account against Mill’s speculative ideas. Thus, the present account starts
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with the field of physics which demonstrates basic characteristics of parallel
computation. The formulation of rules for activation modes characterizes
particular intrinsic attributes of a system (Holthausen, 1998; Holthausen and
Breidbach, 1999; Khaikine and Holthausen, 1999). The crucial point is seen
in the topology of the system (Holthausen and Breidbach, 1997). By a
dynamical interpretation of the elements that constitute the topology of the
system, a new purely instrinsic definition of information is given (Holthausen,
1998). The description of a system’s intrinsic computational characteristics is
sufficient to reflect at least the framework of a logical calculus. Such charac-
teristics are not necessarily neuronal. Physics allowed the demonstration of
principal qualities of systems possessing such characteristics. The nervous sys-
tems is just one of these.
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