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Researchers have held different views on what role the nervous system should play in
the study of psychological phenomena. By far, the most informative line of research in
the area has been conducted by Lashley whose work has opened our eyes to the possi-
bility that learning and remembering are unexplainable in terms of the storage and
retrieval of specific traces. However, with this exception, the twentieth century is
likely to be remembered as an era during which the brain has been considered irrele-
vant for the study of the mind. This has certainly been the case with the research fol-
lowing the computer-inspired cognitive revolution. Perhaps the most revealing
indication of the degree of reluctance to embrace the brain in the study of the mind
can be found in the so-called brain-inspired connectionism that purports to use the
brain as a metaphor, and not as the literal foundation it really is, for the structure of
cognition. Focusing on the topics of learning and remembering, this paper discusses
the role of the brain in the research of Lashley, brain-inspired connectionism, and the
emerging field of biofunctional cognition. The hope is to illustrate, through biofunc-
tional cognition, the productive nature of basing psychological thinking on the foun-
dation of a comprehensive theory of the functioning of the nervous system.

Lashley (1915, 1929, 1950) devoted more than three decades of research
in pursuit of localized memory traces in the brain. His detailed investigations
uncovered no such traces, but prepared the empirical groundwork for the
development of the nonlocalizationist perspective on learning and remem-
bering. After Lashley (1890-1958), the research on distributed memory con-
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tinued a steady course (see Iran-Nejad and Ortony, 1984). Yet, the main-
stream cognitive science ignored this research and was involved in a cogni-
tive revolution that reified local storage metaphors in their most concrete
form ever in terms of the computer software analogy. Then in mid 1980s,
there was a sudden explosion of interest in distributed representations.

Today, the notion of distributed learning and remembering is firmly
entrenched in a new form of associationism called parallel distributed processing
(PDP) connectionism. Whereas there is widespread agreement that memory
is represented in a distributed fashion, much less consensus exists as to
whether PDP connectionism is the best way to think about distributed learn-
ing and remembering (DLR). This is why a good portion of this article is
devoted to clarifying the status of DLR in PDP associationism. The main
theme here is that DLR research originated and continued to grow in a
nonassociative context and is fundamentally incompatible with connection-
ism (see Iran-Nejad, 1980; Iran-Nejad and Ortony, 1984). First, we briefly
discuss some of the reasons why PDP associationism and the (nonassociative)
foundational research that led to the discovery of the notion of DLR are
paradigmatically incompatible in the Kuhnian (1962) sense of the term. We
then argue that PDP connectionism and conventional cognitive science of
the 1970s are fundamentally the same, despite the differences in appearance
and rhetoric. Next, a discussion of some of the major aspects of DLR follows.
Finally, we conclude the article with a biofunctional analysis of distributed
learning and remembering.

PDP Associationism and DLR History: Some Issues
Real Discoveries Must Count

To get a flavor for the degree of incompatibility between the associative
and nonassociative approaches to DLR, consider the seminal work of
Lashley (1929, 1950, 1951). PDP authors have seldom discussed the impli-
cations of Lashley’s data for their models. For example, when they first
introduced their distributed model, McClelland and Rumelhart (1985a)
never mentioned Lashley in the section of their paper where “some impot-
tant credits [were] in order” (p. 161). Interestingly, they did mention him in
the section that discussed their superposition hypothesis, meaning that the
same brain regions store memory traces for many experiences in the form of
superposed layers of information (numeric connection weights for PDP
models). However, as discussed elsewhere (Iran-Nejad and Ortony, 1984},
the fact that the superposition hypothesis is suggested in some of Lashley’s
writings is perhaps the weakest aspect of his notion of distributed learning
and remembering.
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Lashley’s research has received the same sort of treatment throughout the
entire booming PDP literature. The book, Parallel Models of Associative
Memory (Anderson and Hinton, 1981), that launched the current enthusi-
asm in PDP connectionism contained three citations of Lashley’s work, only
one of which touched upon substance, finding “uncompromising” Lashley’s
statement “that even the reservation of individual synapses for special asso-
ciative reactions is impossible” (Lashley, 1950, p. 480). Anderson and
Hinton did not mention that three decades of systematic research had con-
vinced Lashley to accept the hypothesis of equipotentiality of the so-called
association tracts in the nervous system. Nor did they discuss the implica-
tions of this hypothesis, if it were to be correct, for what PDP modelers often
refer to as the new “insight that the knowledge is stored in the interconnec-
tions between units” (McClelland, Rumelhart, and Hinton, 1986, p. 33).

Similarly, in the twenty-six chapters of the two PDP volumes (McClelland,
Rumelhart, and the PDP Research Group, 1986; Rumelhart, McClelland, and
the PDP Research Group, 1986), there was only one reference to Lashley
acknowledging his contribution to distributed representations, while also stat-
ing that he “may have been too radical and too vague, and his doctrine of
equipotentiality of broad regions of cortex clearly overstated the problem”
(McClelland, Rumelhart, and Hinton, 1986, p. 41). Again, nowhere in the
1158 pages of two PDP volumes was there a discussion of how Lashley was
vague and what he meant by the term equipotential.

This dwelling on the inadequate treatment of Lashley by PDP modelers
may strike the reader as overkill. However, we felt that this discussion was
needed for two reasons. First, we need to stress that the light treatment of
Lashley in the PDP literature is evidence for the incompatibility of the two
perspectives. Second, Lashley advanced the neuroscience of DLR far beyond
where we are today while PDP, essentially a return to classic associationism,
seems to have pushed it back. Moreover, progress in understanding how the
brain creates the mind requires a principled method of building the present
on the foundation of the past.

Oil and Water Do Not Mix: Nonassociative Concepts in the PDP Literature

Jenkins (1974) rejected associationism as a model of memory and discussed
contextualism as an alternative. For him, the two perspectives were incom-
patible. Like Lashley, Jenkins came to this conclusion after many years of
experience with associationism. However, in their interactive activation
model, McClelland and Rumelhart (1981; Rumelhart and McClelland,
1982) equated context with activation of discrete nodes and connections in
an associative network.
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In another programmatic line of research, Medin and his colleagues
demonstrated that associationism, in its various forms, cannot handle con-
textual and theoretical knowledge (Medin and Schaffer, 1978; Medin and
Shwanenflugel, 1981; Murphy and Medin, 1985). McClelland and
Rumelhart (1985a) referred to this literature and acknowledged that context
presents a challenge for their distributed model, concluding that “the prob-
lem is a severe one, but really it is no different from the problem that all
models face” (p. 183). In any event, the fact that contextualists are so vocal
and convincing in their rejection of associationism, and associationists are so
silent or obscure in their treatment of context, suggests that context is
nonassociative in nature. To show otherwise, PDP researchers must (a) be
much more articulate in explaining the sort of incompatibility that contextu-
alists such as Medin, Jenkins, and others (Bransford, Nitsch, and Franks,
1977) have perceived between context and patchwork spread of activation in
discrete associative nets; and (b) show how contextual knowledge can
emerge out of the sum of the connection weights among the units in an asso-
ciative network. The same arguments apply to the use of other essentially
nonassociative concepts such as schema (Bartlett, 1932; Iran-Nejad, 1980),
dynamic (Iran-Nejad and Chissom, 1992), or distributed in connection with
PDP connectionism (Iran-Nejad and Ortony, 1984).

Historical Foundations of PDP

In addition to associationism, the PDP perspective takes stock in formal
computation. In fact, in the PDP literature, the statement that “knowledge is
stored in . . .” may be completed with either (a) “associative connections” or
(b) “numerical connection weights,” interchangeably. In fact, traditional
associationism and formal computation had already been brought together in
the work of McCulloch and Pitts (1943) who devised a propositional calcu-
lus for representing the activity of what they called nervous nets. The most
basic component of the nervous net was the reflex arc, an anatomical con-
cept that represented a cyclical path of nerve associations which, “starting in
some part of the body, passed by one way to the central nervous system,
whence it was reflected over another to that same structure in which it arose
and there inhibited or reversed the process that had given rise to it”
(McCulloch, 1965, p. 266).

The work on artificial nerve nets by McCulloch and Pitts (1943) and
Hebb (1949) gave rise to more than two decades of research on artificial
neural networks until it was literally abandoned as a result of a review by
Minsky and Pappert (1969). Interestingly, Minsky himself had already suc-
cessfully built in 1951, with Dean Edmonds, the first artificial “nervous
system” (Bernstein, 1981). In spite of this notable success, the disillusioned




DISTRIBUTED LEARNING AND REMEMBERING 157

Minsky convinced many researchers that it was more productive to turn
away from subsymbolic neural networks and toward the symbolic computa-
tionalism of the information processing approach. Renewed interest in
nerve-net research began a decade or so later with the publication of the
book by Hinton and Anderson (1981), which launched the PDP research out
of disillusionment with artificial symbol processing machines, and continued
to grow on the same foundation that Minsky and Papert identified as inher-
ently problematic.

DLR Research and Associationism

Researchers such as Lashley (1929, 1950, 1951) and John (1967, 1972), who
have played the pioneering role in laying the foundation for DLR research,
have argued strenuously against associationism, have viewed evidence sugges-
tive of DLR as evidence against associationism, and have proposed DLR as an
alternative to associationism. By contrast, PDP connectionists turned to asso-
ciationism mainly because they were experiencing disillusionment about their
own work in the artificial intelligence and information processing psychology
of the 1970s. It is not surprising, therefore, that little attention has been given
by connectionists to the foundational DLR research, which has had a long,
steady, and respectable empirical and theoretical history. Instead, as just
noted, connectionists have based their models on the formerly abandoned
work in neural-net associationism by analogy to the network-like physical
appearance of the brain.

Practically every researcher who has contributed to the notion of DLR, in
the sense used by Lashley, has also found associationism unacceptable, going
back at least to Dewey’s (1896) seminal critique of the reflex arc. Lashley
himself (1929, 1951) found his data as evidence against associationism:

The results are incompatible with theories of learning by changes in synaptic structure,
or with any theories which assume that particular neural integrations are dependent
upon definite anatomic paths specialized for them. Integration cannot be expressed in
terms of connections between specific neurons. (Lashley, 1929, p. 176)

Like Dewey (1896), Lashley (1929, 1950, 1951), and Jenkins (1974), Bartlett
(1932) also stressed the incompatibility between associationism and his
approach, maintaining that “the past operates as an organized mass rather
than as a [patchwork] group of elements each of which retains its specific
character” (p. 197). Bartlett also prophetically predicted that “in various
senses, therefore, associationism is likely to remain, though its outlook is for-
eign to the demands of modern psychological science” (p. 308).

Bartlett’s (1932) main objection to associationism was that “it tells some-
thing about the characteristics of associated details, when they are associ-
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ated, but it explains nothing whatever of the activity of the conditions by
which they are brought together” (p. 308). By adopting a nonassociative
approach to the exploration of the underlying conditions, Bartlett also sug-
gested that the associative approach is unsuitable for such exploration.
However, the study of the activity of the conditions by which associative
details, or subsymbolic (microstructural) units as they are now called, bind
together into (symbolic) associative structures is exactly what PDP connec-
tionism purports to do.

Summary

PDP connectionism and DLR foundational research represent two separate
and fundamentally different worlds. DLR concepts, including the term dis-
tributed itself, behave like oil in water in the context of PDP connectionism;
PDP modelers have paid little attention to DLR foundational research; the
historical roots of PDP connectionism had already been rejected by DLR pio-
neers; and many of the leaders who contributed to the notion of DLR have
found it necessary to reject associationism. Ignoring the inherent incompati-
bility between these two perspectives {e.g., by mixing concepts from the two)
is likely to be detrimental to understanding the nature of human learning
and remembering.

PDP and the Cognitive Revolution: Some Nonissues

Thus, PDP did not result from a systematic examination of the DLR foun-
dational research. Neither did it develop as a result of the normal growth of
the research on natural or artificial neural nets. Rather, it emerged as a reac-
tion to the problems experienced by the artificial intelligence (Al) and
information processing psychology of the 1970s; and it represents a return to
a neural-net approach that was once abandoned by the very same leaders
who had made the most compelling contributions to it. However, while all of
this seems highly suggestive to us, none of it can by itself uphold the conclu-
sion that PDP connectionism is untenable and unsuitable for future DLR
research, as we happen to think it is. Such a conclusion must stand on the
foundation of a more in-depth analysis of the nature of the PDP itself and its
relation to DLR.

To those who closely witnessed the sudden shift of interest in mid 1980s
from conventional to PDP cognitive science, the development may have
seemed like an unusual turn of events, given what philosophers of science
have been saying about the growth of scientific thinking. What is unusual is
that some of the same researchers and many of the same concepts that played
a direct role in popularizing the cognitive revolution in mid 1970s also played
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the leading role in promoting the PDP revolution in mid 1980s. However, the
issue of whether the PDP approach is fundamentally different from traditional
cognitive models is far from settled (see Oden, 1988; Pinker and Mehler,
1988). One source of confusion is the reluctance of the leading PDP connec-
tionists to recognize the key areas of contrast between their own old (or con-
ventional) and new (or PDP) approaches. Instead, they have often focused in
their comparisons on notions such as the following that can readily be shown
to be nonissues with regard to the phenomena under consideration.

Rules Versus Regularities — A True Dichotomy?

In 1975, Rumelhart introduced a set of syntactic and semantic story gram-
mar rules for the structural analysis of narratives. These rules, devised by
analogy to Chomsky’s (1965) transformational grammar for sentences, were
“to account for a substantial range of phenomena related to the higher order
structures found in stories” (p. 234). Rumelhart’s paper started an influential
line of research that lasted close to a decade until the publication of two dev-
astating reviews (Black and Wilensky, 1979; Wilensky, 1983) literally
ensured that “the mistake in the analogy to sentence grammar should by now
be obvious” (Wilensky, 1983, p. 582).

Later in 1986, McClelland, Rumelhart, and Hinton alluded to the story
grammar experience stating that their PDP approach is completely different
from “the ‘explicit rule formulation’ tradition, as represented by the work of
Winston (1975), the suggestions of Chomsky, and the ACT model of J.R.
Anderson (1983)” (p. 32):

First, we do not assume that the goal of learning is the formulation of explicit rules.
Rather, we assume it is the acquisition of connection strengths which allow a network
of simple units to act as though it knew the rules. Second we do not attribute powerful
computational capabilities to the learning mechanism. Rather, we assume very simple
connection strength modulation mechanisms which adjust the strength of connections
between units based on information locally available at the connection. (McClelland,
Rumelhart, and Hinton, 1986, p. 32)

Rumelhart and McClelland (1986) have offered an influential demonstra-
tion of how PDP networks can manifest rule-like behavior without contain-
ing any explicit rules. They used the domain of the past tense of English
verbs to show that rule-like behavior, similar to those used by children, can
emerge out of nonrule-like underlying regularities without any explicit deep-
structure rules or any other type of symbolic representations of verbs, roots,
or suffixes. The basic network, called a pattern associator, consists of two
layers of units: an input layer whose elements are connected to every element
of an output layer by means of excitatory or inhibitory connections. The pat-
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tern associator learns by modulating the input-output connection weights
using Rosenblatt’s (1962) perceptron convergence rule. (Note that the pattern
associator does not act as though it knows a rule; it blindly follows one.) On a
given trial, the pattern associator takes an input pattern representing a verb
stem; it calculates an output pattern representing its own version of a past
tense; it compares this version to the correct version provided by an external
“teacher”; and it adjusts its internal connection weights before the next trial,
The pattern associator knows the association between the verb root and its
correct past tense form when the actual output it calculates matches the cor-
rect feedback given by the teacher.

The rule-versus-regularity dichotomy crumbles in one’s hands upon the
most cursory examination. First, the PDP approach has itself produced a new
generation of rules — and most aptly called such: the Hebb rule, the delta
rule, the perceptron convergence rule, the back propagation rule, and so on.
It is difficult to see the fundamental difference (at least along the rule-versus-
regularity dimension) claimed by PDP connectionists between these rules
and transformational rules (Chomsky, 1965), production rules (Anderson,
1983), story grammar rules (Rumelhart, 1975), or other types of rules postu-
lated in conventional cognitive models. Secondly, the related explicit-
versus-implicit distinction made between PDP connectionism and
conventional approaches is equally fragile. For instance, following Polanyi
(1958), traditional cognitive scientists routinely distinguish between explicit
and tacit rules. In short, if there is any aspect that sets apart PDP rules from
conventional rules, it has not yet been made clear.

The validity of any kind of rule depends first on how well it works.
Rumelhart and McClelland’s work on learning the past tense of English verbs
has been carefully evaluated by linguists and other researchers (see Pinker
and Prince, 1988). The general conclusion is that it is almost certain that
language learning does not work in this way (Prince and Pinker, 1988).
Nevertheless, as Prince and Pinker put it, PDP connectionists continue to
“suggest, and many are quick to agree, that this shows the viability of associa-
tionist theories of language acquisition, despite their virtual abandonment by
linguists 25 years ago” (1988, p. 195).

PDP and Behaviorism

There is even some question as to whether PDP connectionism can handle
the mentalistic phenomena that differentiate conventional cognitive science
and the strict behaviorism of the 1950s. This suggests that the standard con-
trasts made between the conventional cognitive science and PDP connec-
tionism (those that we are identifying as nonissues) may themselves have
been misguided to begin with. The inability of the PDP connectionism to
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deal with key mentalistic concepts such as attention or awareness along with
its constant struggle to disassociate itself from stimulus-association—response
(i.e., PDP’s input—connection—output structure of the pattern associator or
other connection machines) indicates that PDP connectionism is more simi-
lar to behaviorism than to cognitive psychology. Rumelhart and McClelland
(1986) tried to dissociate PDP connectionism from behaviorism by claiming
that PDP models allow hidden units and internal representations. This argu- °
ment is not very convincing because behaviorists also postulated internal or
hidden stimulus—response connections {short of postulating mentalistic con-
cepts), which is exactly what PDP internal representations are: patterns of
connection weights in the black box.

The correspondence between the way a pattern associator learns and the
way a rat is said to learn in a Skinner box is striking. In both cases, there is a
stimulus, a response, a reinforcement, and modification of the likelihood of
the correct response. The, dlfference is that in the pattern associator the stim-
ulus and the response are’ exphcu:ly identified as collections of subsymbolic (or
uninterpretable) elements, as opposed to the stimulus—response elements that
are implicitly uninterpretable. In both cases, the resulting output (the pattern
or the response) is interpretable. Therefore, at least in this case, the subsym-
bolic—symbolic distinction reduces to semantics and carries no real substance.
It is also not difficult to trace the historical roots of the PDP approach to radi-
cal behaviorism (see Reece, 1987). The perceptron model, on which the pat-
tern associator is based, emerged out of strict behaviorism and disappeared
with it. It is common among PDP authors to argue that the Minsky and
Pappert (1969) book is responsible for the misfortune that befell perceptron
research. Although this may, strictly speaking, be true, the explanation is too
straightforward to capture the depth of the issues involved. It does not explain
what prevented researchers from using the sort of handcrafted solutions found
nowadays in the PDP literature, especially since many of these solutions were
suggested by Minsky and Pappert themselves. A more compelling explanation
might be that Minsky and Pappert’s (1969) book had the same effect on per-
ceptron-type “behaviorism” as Chomsky’s (1959) review of Skinner’s Verbal
Behavior had on behaviorism in general, and for essentially the same reasons.
Those reasons are still as alive and well today (e.g., in the work of those who
find PDP connectionism unsuitable for language learning) as they were when
Jenkins (1974), Lashley (1951), Bartlett (1932), Dewey (1896), and the
Gestalt school argued against associationism.

Symbolic versus Subsymbolic

The PDP theorists also differentiate their models from conventional cogni-
tive models along a symbolic—subsymbolic dimension. This is not exactly a
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nonissue (see Iran-Nejad, 1980, 1987); but it amounts to one in PDP con-
nectionism. As the distinction goes, the conventional approach is the sym-
bolic paradigm. Concepts and subconcepts serve as interpretable
representations for external objects and their parts; and rules are inter-
pretable tools of symbol manipulation. PDP connectionism is said to be a
subsymbolic cognitive paradigm. The mind is said to work, metaphorically
speaking, like the brain. Meaningful mental units and associations are
replaced with nonsense units and connections; and mindful rules are
replaced with mindless ones. These entities are said to serve, in large num-
bers, as subsymbolic representations of stored symbolic knowledge.

The symbolic—subsymbolic distinction is a major source of confusion with
regard to how PDP and conventional paradigms are different. One problem is
that subsymbolic entities in PDP connectionism are defined as interpretable
mental phenomena: a unit “represents a hypothesis of some sort (e.g., that a
certain semantic feature, visual feature, or acoustic feature is present in the
input)” [Rumelhart, Smolensky, McClelland, and Hinton, 1986, p. 8]. Note
that subsymbolic entities are not identified as features. Rather, they are
hypotheses about features. Features could be uninterpretable; but it is difficult
to imagine uninterpretable hypotheses. The problem sinks even deeper into
the realm of incomprehensibility. The fact that terms such as feature have
been used all along in the conventional symbolic paradigm — much in the
same sense as they are used in the PDP subsymbolic paradigm (i.e., as ele-
mental components of more complex structures) — is one of the major rea-
sons for the controversy that subsymbolic connectionism might not be any
different at all from the conventional symbolic perspective.

Computer-Inspired versus Brain-Inspired

Another aspect of the conventional cognitive science that PDP modelers
often compare to their new connectionism is that the conventional approach
is computer-inspired as opposed to brain-inspired. Two interrelated aspects
are generally mentioned in this regard: speed and parallel processing. The
computer is fast and sequential, while the brain is slow and parallel.
Although these might be important considerations in Al, they are nonissues
in cognitive science. First, the brain is capable of sequential symbol process-
ing (SSP), like or unlike computers. But since PDP models provide no clues
whatsoever as to how the brain engages in SSP, there is no basis for finding
them to be more brain-inspired. Secondly, the fact that conventional com-
puters are incapable of parallel processing — and the brain is — does not
mean that the conventional cognitive science goes out of the window. Both
subsymbolic and symbolic aspects of cognition must be explained, preferably
simultaneously in terms of a single paradigm (see Bereiter, 1991). It is a basic
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tenet of PDP connectionism that what makes the brain fast and efficient is
subsymbolic parallel processing. However, one might assume, on the contrary,
that the brain — especially that of human beings (as compared to animals)
— is capable of symbolic parallel processing (SPP), and that is what makes
the brain fast and efficient.

Many cognitive scientists now agree that the brain and the computer do
things differently. Many also agree that conventional cognitive science prob-
ably went too far in taking the computer metaphor literally. However, the
new PDP connectionism has yet to show exactly where cognitive science
went wrong in making use of the computer metaphor as a model of human
cognition.

Similarly, few researchers would dispute the fact that “sooner or later, theo-
ries of cognition will have to deal with the problem of the relationship
between the neuronal network and the conceptual network” (Iran-Nejad,
1980, pp. 10-11). However, PDP connectionists have engaged in what
amounts to the circumvention of the mind-brain problem. Specifically, PDP
connectionists used the term brain-inspired, instead of brain-based, to avoid the
problem of directly addressing the mind-brain problem. The term brain-inspired
licenses PDP connectionists’ metaphoric adoption of neurophysiological con-
cepts such as activation, inhibition, threshold, or summation. It also assures
the freedom from having to deal with the real nature of “the relationship
between the neuronal and the conceptual networks [that] must be theoretically
clarified before neurological concepts can be used in the psychological
domain” (Iran-Nejad, 1980, p. 12).

Given the associative assumptions and the “overly complicated picture”
cognitive models such as those postulated by Rumelhart (1975, 1977, 1978)
portray, the issue of a bridge between mental phenomena and the nervous
system seems too remote to even consider (Iran-Nejad, 1980). The willing-
ness to use the brain as a metaphor for thinking about the microstructure of
cognition has enabled the PDP modelers to use some brain concepts (e.g.;
neural networks, activation, inhibition), while at the same time keeping
their distance from the brain itself. This is, of course, a classic case of having
one’s cake and eating it as well. Brain concepts are as alien in the PDP con-
text as the term distributed is in the context of associationism. Therefore,
PDP connectionists have little advantage over conventional models as far as
the study of the mind-brain relationship is concerned.

Summary
It is not exactly clear how cognitive rules emerge out of nonrule-like com-

putation. However, PDP rules such as the delta rule are still rules. Parallel dis-
tributed processing connectionism is more comparable to behaviorism than to
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cognitive science. The symbolic-subsymbolic dimension is too ill-defined to
differentiate the PDP and conventional approaches. Connectionism may be
called brain-inspired, but it contributes very little to our knowledge about the
mind-brain relationship. In other words, many of the areas that PDP connec-
tionists have selected as the basis for comparing their models with conven-
tional approaches only have the appearance of being important issues. Once
one tries to step beyond rhetoric, the seemingly important issues quickly
change into nonissues.

Distributed Learning and Remembering: Some Key Issues
The Computer Metaphor and the Autonomy of the Product

The computer software metaphor was explicitly introduced by Neisser
(1967) who used the program analogy to argue that long-term mental schemas
can literally exist in the head. He argued that the study of mental programs is
what psychology is all about. This was the beginning of the information pro-
cessing cognitive psychology that viewed the mind as operating, like a com-
puter, on a vast number of mental files. Discovering the organization of these
files in the long-term storehouse, as well as the processes by which they were
stored and retrieved, became the central goals of the cognitive science that
reached the peak of its popularity in mid 1970s. Here is where, we believe, the
cognitive revolution went wrong: it became exclusively the science of the
processing, storage, and organization of static mental software.

The clean separation of the mental software from the brain wetware is a
good example of how PDP and conventional models are identical in their fun-
damental assumptions, in spite of their superficial differences. Recall that PDP
units are not brain units such as neurons; they are mental entities. In other
words, the subsymbolic level is a purely mental-software level dealing exclu-
sively with the analysis of the microstructure of cognition. No consideration
whatsoever is given to the functional properties of the brain. It is assumed
that the subsymbolic software of the mind is formalizable as an autonomous
system in its own right (Smolensky, 1988). In short, like traditional cognitive
models, which were proposed by some of the PDP leaders in mid 1970s, the
PDP models born in mid 1980s are concerned with the study of the mental
software. According to McClelland, Rumelhart, and Hinton (1986):

They [PDP models] hold out the hope of offering computationally sufficient and psy-
chologically accurate mechanistic accounts of the phenomena of human cognition
which have eluded successful explication in conventional computational formalisms;
and they have radically altered the way we think about the time course of processing,
the nature of representation, and the mechanisms of learning. (p. 11)
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This quotation claims that PDP models are paradigmatically different from
traditional cognitive models. However, it also shows that the two approaches
share the fundamental assumption of the autonomy of the mental software.
Like pure mathematics, pure cognition can also exist.

Is the analysis of the features of mental products (or software) likely to
shed light on our understanding of how people think and solve problems? An
analogy might be helpful here. Imagine a group of researchers preoccupied
with the analysis of the curves, lines, angles (and so on) of the photographs a
camera takes. The goal is to understand the camera’s method of storing and
reproducing the photos. Think for a moment about the analysis of such fea-
tures, their optimal organization in an accumulated corpus of photos, and the
manner by which they interconnect. How likely is such an exploration to
shed any light at all on the picture-taking capacity of the camera itself? The
photograph of an elephant is different from that of an octopus. Do these dif-
ferences have anything to do with the picture-taking capacity of the camera?
This analogy was once used to illustrate the inherently problematic nature of
conventional cognitive science of the 1970s (Iran-Nejad, 1980). It applies
equally well to PDP connectionism despite the brain-inspired rhetoric.

The Schema: A Long-Term Structure or a Transient Functional Pattern

A key concept in conventional cognitive science of the 1970s was the
notion of schema. Rumelhart (1980) defined the schema as a long-term
memory monolith — as the most elemental building block of cognition.
Long-term memory schemas made it difficult to explain how people reorga-
nize their thinking in order to recontextualize their understandings from one
external setting to another. Iran-Nejad (1980) used the comprehension of
the surprise-ending story to illustrate the problem and concluded that, in
order to solve this problem, schemas had to be viewed as transient ongoing
patterns (see Iran-Nejad and Winsler, 2000, this issue).

[ran-Nejad (1980) used a light bulb constellation analogy to illustrate how
the brain might create and uphold transient schemas without storing permanent
representations of them. Two basic assumptions were made about the brain and
its functioning. The first assumption was that the brain is populated with a large
number of living microsystems. In terms of its self-reflective discriminability,
each microsystem was assumed to be analogous to a color-coded light bulb. The
second assumption was that knowledge was none other than the “live” self-
awareness of the activity of ongoing constellations of the brain microsystems (or
neurons). Not only had the light bulb analogy spawned a new conception of
knowledge and knowledge schemas (as ongoing patterns of self-awareness); it
had also quite naturally introduced the notion of biofunctional distributed
learning and remembering (BDLR), which we discuss later in this article.
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The transient-schema hypothesis gave rise to more guestions than answers,
the most urgent of which had to do with the nature .of long-term remember-
ing. Nevertheless, it made it possible to draw a rough picture of how the brain
is capable of spontaneous recontextualizations of one’s thinking from one
moment to another in terms of what Bartlett (1932) called the (ever-evolv-
ing) schema-of-the-moment. The surprise-ending story illustrated the most dra-
matic instance of the spontaneous recontextualization power of the brain. It
showed how people used the elements of one (pre-surprise) schema-of-the-
moment to create a different (post-surprise) schema-of-the-moment. Over the
years, some of the initial questions surrounding the transient-schema hypoth-
esis have been addressed, including those having to do with how the brain
engages in sequential and parallel symbolic processing (Diener and Iran-
Nejad, 1986; Iran-Nejad, 1989a, 1989b, 1989c¢; Iran-Nejad, Clore, and
Vondruska, 1984; Iran-Nejad and Ortony, 1984).

Lewels of Analysis

The concept of levels of analysis has become an area of concern for PDP
models ever since Broadbent (1985) posed the problem in his commentary
on McClelland and Rumelhart’s (1985a) distributed model. Broadbent sug-
gested that the proper level to consider the hypothesis that memory is dis-
tributed is the physiological level (see Iran-Nejad, 1980) rather than the
psychological level. He therefore, questioned the validity of the psychologi-
cal evidence McClelland and Rumelhart used to compare their model with
traditional cognitive science models they examined.

Broadbent reasoned that at a purely psychological level distributed and
localizationist approaches are indistinguishable from each other. To be sure, a
theory postulating localized (unitary) psychological phenomena may be
either distributed or localized at the level of the physical brain; and an
approach maintaining that memory is distributed at the physiclogical level is
compatible with one postulating localized entities at the psychological level.
Broadbent concluded that the evidence to which McClelland and Rumelhart
“appeal is from a different level of explanation, and therefore irrelevant to
the undoubted merits of the distributed approach” (p. 192).

In their rejoinder, McClelland and Rumelhart (1985b) pointed out that
“Broadbent’s analysis went astray” because it was based on an incomplete
consideration of Marr’s (1982) notion of levels. Broadbent’s (1985) discus-
sion referred to Marr’s implementational (or physiological) and computa-
tional (or psychological) worlds. It did not mention Marr’s algorithmic (still
psychological) world. McClelland and Rumelhart reasoned that “indeed, it
would appear that this [i.e., the algorithmic level of analysis] is the level to
which psychological data speaks most strongly” (Rumelhart and McClelland,
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1986, p. 123). And this was exactly the point Broadbent was rejecting:
whereas the evidence in support of the notion of distributed remembering
would only be meaningful at the physiological level of analysis, the psycho-
logical data such as those presented by McClelland and Rumelhart applied
only to psychological levels and, therefore, would have no bearing on the
DLR hypothesis.

More specifically, McClelland and Rumelhart (1985b) failed to consider
two aspects of Broadbent’s (1985) discussion. First, Broadbent’s main point
was that the term distributed was applicable to the level of the physical brain
(i.e., to the level of the brain hardware, so to speak) and not to any purely
psychological (or software) level — algorithmic or computational. Secondly,
McClelland and Rumelhart did not consider the possibility that in using only
two levels, Broadbent was being guided by the concept of natural levels with-
out getting involved with the proliferation of artificial levels handcrafted
arbitrarily by investigators. After all, why only two cognitive levels and not
more.

By instantiating their model more firmly at a purely psychological level,
McClelland and Rumelhart (1985b) did not solve the problems raised by
Broadbent. Instead, they raised another issue more problematic for the PDP
approach: whether or not the term distributed can be applied at all to the psy-
chological level. The issue became substantially more complicated in a
recent article by Smolensky (1988) who claimed that PDP units and connec-
tions have no spatial location, as opposed to neurons and synapses that are
located in three-dimensional space. In any event, at least one thing is certain
in considering the PDP discussions of the notion of levels: Lashley’s (1929,
1950, 1951) evidence, which was gathered based on the assumption of dis-
tributed learning and remembering in the three-dimensional brain, has little,
if any, bearing on the meaning of the term distributed used in the expression
parallel distributed processing.

Intralevel versus Interlevel Approaches

In the expression distributed learning and remembering, the term distributed
makes more concrete sense at the physical level of the three-dimensional
brain as was originally conceived by Lashley (1929). However, the physical
brain is not the proper domain for psychological research. Learning and
remembering, on the other hand, are more directly psychological than physi-
ological problems. One way to take the dilemma out of the notions of PDP or
DLR is to use the brain as a metaphor for the development of a conceptual
framework for psychological research: to “replace the ‘computer metaphor’ as
a model of mind with the ‘brain metaphor’ as model of mind” (Rumelhart,
Hinton, and McClelland, 1986, p. 75). This is the route PDP connectionists
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took in search of a home for the concept of distributed representations at a
purely psychological level. They postulated a hypothetical subsymbolic level
and selected that as the proper domain for solving psychological problems. In
order to be able to dispose of the cake of the brain and keep it as well, PDP
connectionists introduced the subsymbolic psychological level using the
brain as a metaphor for thinking about the microstructure of cognition:

Though the appeal of the PDP models is definitely enhanced by their physiological
plausibility and neural inspiration, these are not the primary bases for their appeal to
us. We are, after all, cognitive scientists, and the PDP models appeal to us for psycho-
logical and computational reasons. (McClelland, Rumelhart, and Hinton, 1986, p. 11)

However, if the arguments reviewed so far are correct, the cake may not exist
at all. There is nothing to eat or keep. PDP connectionism faces several
problems. It reduces cognitive science to (parallel) behaviorism; the term
distributed is not applicable to the psychological level, literally or metaphori-
cally; and the assumption that there exists a microstructural level at which
cognitive phenomena may be analyzed and mathematized autonomously is
untenable.

If the term distributed is interpretable only in reference to the physical and
physiological brain, as Broadbent (1985) argues, then exactly how is it rele-
vant from a psychological point of view. Clearly, psychologists cannot choose
neuroanatomy and physiology as the proper domain for their research. In
what sense then is the evidence supplied by Lashley (1929), who systemati-
cally removed sections of the brains of laboratory animals and examined their
learning and retention capabilities, applicable to the psychological level?

There is a solution to this dilemma that is compatible both with
Broadbent’s (1985) view and Lashley’s (1929) evidence: to abandon the
assumption of the autonomy of the product as a separate level of analysis and
view psychology as an interlevel discipline (Iran-Nejad, Clore, and Vondruska,
1984). More specifically, confining one’s hypotheses and theories to the phe-
nomena at the purely psychological level or the purely physical level may be
referred to as an intralevel approach. Both conventional cognitive models and
the PDP models are intralevel approaches. They share the assumption of the
autonomy of the product and focus directly on the analysis of the features of
the product. Lashley, on the other hand, was conducting interlevel psycholog-
ical research. He was testing hypotheses about learning and remembering in
terms of the functional properties of the physical brain. ‘

Because intralevel approaches explain more complex phenomena in terms
of simpler entities at the same level, they necessarily encounter the problem
of reduction (Wimsatt, 1976). PDP models, for instance, explain complex
mental schemas in terms of associative connections among large sets of
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mental microfeatures. The units, the connections, and the whole schema are
all in one and the same (cognitive) level. Therefore, neither of the
approaches can solve the problem often stated in terms of the Gestalt dictum
that the whole is more than the sum of its parts.

The interlevel approach explains cognitive phenomena such as learning
and remembering in terms of the relevant functional properties of the brain,
as did Lashley (1929, 1950, 1951). Functional properties of the brain and its
components, then, become the proper domain of psychological research and
the source of psychological hypotheses. The assumption of the autonomy of
the product, held by Marr (1982), PDP connectionists, and conventional
cognitive scientists would have to be abandoned altogether. This does not
mean, however, “that in order to learn about cognition, one would have to
open the head [as did Lashley] and directly examine the neuronal organiza-
tion” (Iran-Nejad, 1980, p. 29). Like Lashley (1929), Bartlett (1932) took a
functional approach, but without working directly with the physical brain.
What distinguishes psychology from neurophysiology is the type of questions
addressed rather than simply differences in research methodology. To use the
camera analogy, we must try to understand how the camera works as an inte-
grated system, instead of directly analyzing and formalizing the features of the
pictures the camera takes. We can then continue to test our hypotheses about
the functional properties of the camera and its component parts by manipu-
lating variables related to the different types of pictures the camera takes.

This leads us back to the distinction between schemas as monolithic long-
term memory structures capable of being stored, like computer programs,
autonomously of the information processing system that uses them
(Rumelhart, 1978) and the view that they are live patterns of awareness
capable of existence only so long as they are being created and upheld by the
ongoing activity of the brain, functioning as a whole. Iran-Nejad (1980)
traced this structural-functional distinction to the work of Bartlett (1932)
who argued that the functional level, and not the structural level, is the
proper domain of experimental psychology.

The hypotheses that the brain is populated with a large number of
microsystems capable of generating self-awareness and that knowledge is live
self-awareness created by the ongoing activity of brain microsystems are
interlevel hypotheses. They are about psychologically-relevant biofunctional
properties of the nervous system. Lashley’s (1929) evidence is directly rele-
vant to these hypotheses and to other aspects of the biofunctional model
because such a model can address the issue of how the functional properties
of distributed constellations of brain microsystems can create and uphold
ongoing mental schemas.
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Summary

Like conventional approaches, PDP connectionists maintain the assump-
tion of the autonomy of mental products. They analyze, autonomously of the
functional properties of the nervous system, complex mental and behavioral
structures into mental microunits and connection weights. As a result, they
face the insoluble problem of reduction which is characteristic of all intralevel
approaches. An alternative way of thinking about distributed learning and
remembering was proposed based on the assumptions that mental structures
are nothing other than live self-awareness, they can exist only while they are
being created and upheld by the brain, they are directly unanalyzable, and
they can be explained in terms of the functional properties of the brain and its
components (Iran-Nejad, 1980). It is only by taking an interlevel approach of
this kind to the study of the mind that psychologists can avoid the problem of
reduction (Iran-Nejad, Clore, and Vondruska, 1994).

Biofunctional Distributed Learning and Remembering

As already discussed, research on biofunctional distributed learning and
remembering {(BDLR) began with an interest in the nature of mental
schemas. The DLR aspect, although an inherent aspect of the model, has not
been directly addressed in any detail in the past. The immediate goal of the
biofunctional approach was to examine mentalistic concepts such as
schemas, learning, awareness, attention, and remembering in terms of the
functional properties of the brain (Iran-Nejad and Ortony, 1984), without
reducing these concepts to nonmentalistic brain concepts such as activation,
inhibition, and connection weights (Iran-Nejad, 1980).

A detailed analysis of the biofunctional schema theory of learning and its rela-
tionship with modern schema theories has been given in Iran-Nejad and Winsler
(2000, this issue). The relationship of the model with PDP schema theory
(Rumelhart, Smolensky, McClelland, and Hinton, 1986) has also been already
briefly examined, both theoretically (Iran-Nejad, 1989a, 1989b) and empiri-
cally (Iran-Nejad, 1989c¢). In this last section, we will focus on the DLR aspect
with an emphasis on its relationship to Lashley’s (1929, 1950, 1951) research.

The basic biofunctional assumptions directly bearing on DLR will be pre-
sented first. It is useful to bear in mind that learning and remembering may
be viewed as distributed in the sense that they involve brain activity occur-
ring simultaneously in constellations of neurons located physically at various
parts of the brain. There is, however, another related sense in which learning
and remembering may be viewed as distributed: the factors that contribute to
learning are themselves distributed in the sense that they come from multiple
sources (Bereiter, 1985; Iran-Nejad, McKeachie, and Berliner, 1990).




DISTRIBUTED LEARNING AND REMEMBERING 171

Brain Components as Subsystems and Microsystems

There is a tendency among some researchers to think of the brain as an
anatomical mass, a mushroom of areas, centers, or regions packed against one
another and connected by a network of neural pathways. This anatomical
mass is thought to house the mind in a hierarchical fashion, with simple sen-
sory materials stored statically at lower levels and complex mental schemas at
higher regions. We believe that this view of the brain is almost certainly
wrong.

It is more likely that the nervous system comprises an indefinite, but not
inordinately large, number of interrelated subsystems, of which sensory sub-
systems are but a subset. Similarly, the smallest unit of the nervous system is
probably not a nerve fragment, a chemical particle, or a synapse, but a func-
tionally autonomous microsystem, equivalent perhaps to what is traditionally
called the neuron. Every subsystem would, then, consist of a vast number of
microsystems. Brain subsystems and microsystems do not store static mental
entities of any kind. They create and uphold them in the form of live, as
opposed to pre-recorded, self-awareness from one moment to another.

Heterogeneous and Homogeneous Specialization

The microsystems in different subsystems are specialized, phylogenetically
or ontogenetically, to create qualitatively different subjective experiences.
An obvious example of this is that the microsystems responsible for audition
create self-awareness of sound, which is a qualitatively different experience
from the self-awareness created by the microsystems involved in vision.
Thus, with regards to the subjective experiences they create, the microsys-
tems in different subsystems are heterogeneously specialized. This sort of het-
erogeneous specialization is assumed to play the primary role in causing
diversity in subjective experiences. This diversity is evolution’s solution to
the problem of complexity.

The microsystems within each subsystem, on the other hand, are homoge-
neously specialized. This simply means, for instance, that all the microsystems
within the auditory subsystem are similarly specialized to create auditory expe-
riences, although, of course, there is enough variety among them to deal with
all the different aspects of auditory discrimination including those involved in
the perception of speech (e.g., pitch, rhythm, intonation).

Group Distribution and Constellation Distribution

The term distributed in BDLR has two related meanings. Sometimes mental
entities are created and upheld by a group of localized microsystems (group
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distribution), much in the same way that the traffic arrow on the freeway is
created by a group of adjacent light bulbs. Group distribution is primarily a
within-subsystem phenomenon and is responsible for the creation of such
basic experiences as pure auditory and visual imagery. The display on your
calculator forms numbers, your computer screen displays letters and words,
and your television screen shows pictures by taking advantage of the princi-
ple of group distribution, although they all do so in a purely mechanical
fashion.

The “mental displays” formed by group distribution may be described as a
one-to-many type of relationship — where one refers to the mental product,
and many refers to the brain microsystems. To use the traffic arrow analogy,
the arrow display (one) and the blinking light bulbs (many) creating and
upholding it constitute an example of such a relationship. It is important to
reiterate that this is an interlevel relationship with the term one referring to
the mental display and the term many referring to the group of brain
microsystems creating the display. At least in the biofunctional model, this
has to be the case necessarily because the model abandons the assumption of
the autonomy of the product. No static trace of the arrow remains, in any
form whatsoever, when the light bulbs go off. It is rather obvious here that it
makes no more sense to try to account for the construction of mental displays
by binding together a group of smaller feature-like entities any more than it
makes sense to build a traffic arrow by directly patching together a number of
light spots (Iran-Nejad, Clore, and Vondruska, 1984).

The interlevel one-to-many relationship (Iran-Nejad, 1980; Iran-Nejad,
Clore, and Vondruska, 1984) must, therefore, be distinguished from the
intralevel one-to-many relationship more recently postulated by PDP theo-
rists. For instance, Rumelhart, Hinton, and McClelland (1986) pointed out
that the one-to-many distributed representations they postulated, in which
units represented small, feature-like entities, “should be contrasted to a one-
unit-one-concept representational system in which single units represent
entire concepts or other large meaningful entities” (p. 47). The PDP one-to-
many distributed representations are intralevel because the terms one and
many both refer to mental entities.

The biofunctional (interlevel) one-to-many relationship must also be dis-
tinguished from the (intralevel) one-to-many connection patterns evident in
the anatomical layout of the nervous system (Hinton and Anderson, 1981).
For instance, referring to the anatomical structure of the nervous system,
Broadbent {1985) stated that “the one-to-many and the many-to-one connec-
tions of the sensory pathways resemble much more closely the [distributed]
diagrams constructed by Winograd and Cowan than they do the specific
paths needed for the alternative form of coding” (p. 190). Here again
Broadbent is referring to an intralevel one-to-many relationship because
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both ends of the one-to-many relationship are located at the same anatomic
level, where one (complex unit) is anatomically connected to many (simple)
units. PDP theorists adopt this apparent, one-to-many, neuroanatomic archi-
tecture as a metaphor for postulating group distributions at the level they call
the microstructure of cognition.

Group distribution is the only sense in which PDP connectionists use the
term distributed. From the biofunctional perspective, within-subsystem group
distribution can do little more than generating meaningless mental displays.
Meaningful mental phenomena such as concepts and schemas require the
participation of many subsystems. And this is where constellation distribu-
tion enters the stage: meaningful mental entities are created and upheld by
widely-distributed constellations of brain microsystems, whose members are
physically located in many different subsystems. The brain creates the con-
cept of dog, for instance, by means of a distributed constellation of microsys-
tems whose members are distributed across the visual, auditory, affective, and
many other subsystems (Iran-Nejad and Ortony, 1984). The biofunctional
model takes advantage of the notion of constellation distribution to explain
Lashley’s (1929) findings.

Equipotentiality in the Nervous System

Lashley (1929) used the term equipotentiality to “designate the apparent
capacity of any intact part of a functional area to carry out, with or without
reduction in efficiency, the functions which are lost by destruction” of
another area (p. 25, italics added). PDP connectionists and others have
pointed out that Lashley’s distributed theory went too far in its assumption of
equipotentiality in brain functioning. This we believe is too quick an evalua-
tion. In fact, we will try to show in this section that by hedging his definition
of equipotentiality with the term apparent, Lashley probably did not go far

enough.
According to Lashley (1929), “the contribution of the different parts of a
specialized area . . . is qualitatively the same” (p. 176). This means that the

parts of a subsystem are equipotential in their ability to create and uphold
mental displays of the patterns for which they are specialized. The computer
screen on which we are typing this paper is equipotential in the sense that any
portion of it can display any specific letter or letter sequence as readily as any
other portion; the different portions of your television screen are equipotential
because any portion can display any picture that other portions can display;
and so is the electric sign described by Lashley: “The activity of the visual
cortex must resemble that of one of the electric signs in which a pattern of let-
ters passes rapidly across a stationary group of lamps. The structural pattern is
fixed, but the functional pattern plays over it without limitation to specific ele-
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ments” (1929, pp. 158-159; see Iran-Nejad, 1980, 1987 for further discussion
of the differences between structural and functional patterns).

[t is important to bear in mind that Lashley’s (1929) concept of equipoten-
tiality should not be contrasted with specialization in the nervous system.
Consider, for instance, within-subsystem specialization. Your color television
screen reflects much more specialization than your black-and-white televi-
sion scteen. Yet, both screens are equally equipotential in the sense that they
can display any specific picture anywhere on them. The analogy can be
extended meaningfully to a color-blind visual system. What equipotentiality
should be contrasted with, therefore, is the notion of fixed specific traces. If
particular letters or letter sequences could only be produced on specific parts
of a computer screen, that screen would be of little, if any, value. Likewise, if
certain images could only be displayed on specific sections of a television
screen, that television would be equally worthless.

One cannot ignore the possibility that the PDP patterns that store specific
schemas in their connections are equally worthless. Earlier in this paper, we
mentioned that Lashley’s (1929, 1950, 1951) nonassociative approach is
incompatible with the associative approach taken by PDP connectionists. We
can now be more explicit about this claim. The idea is that Lashley’s concept
of equipotentiality and the notion of specific traces are incompatible, whereas
associative structures are necessarily synonymous with specific traces:

A pattern of activation only counts as the same as another if the same units are
involved. The reason for this is that the knowledge built into the system for re-creating
the patterns is built into the set of interconnections among the units . . . . For a pattern
to access the right knowledge, it must arise on the appropriate units. In this sense the
units play specific roles in the patterns. (McClelland and Rumelhart, 1986, p. 175)

A great deal has been made of the evidence collected by Hubel and Wiesel
(1968, 1977) which purports to show that there are specific feature detectors
in the primary visual cortex. There are simple cells that respond specifically
to lines or edges of a particular orientation in a specific place in the visual
field. Based on this and similar evidence, McClelland and Rumelhart (1981)
postulated a hierarchical model of word perception. Feature detectors at the
lowest level are connected to letter detectors that are, in turn, connected to
word detectors. Iran-Nejad and Ortony (1984) used what was considered to
be a simple but highly informative example of between-subsystem equipoten-
tiality to argue against the notion of specific detectors in the nervous system:

Blindfolded subjects are capable of correctly identifying letters (finger-written) on
their skin. White, Saunders, Scadden, Bach-Y-Rita, and Collins (1970) used a visual
substitution apparatus which converted optical images into tactile displays which blind
or blindfolded subjects were able to “see with their skin.” It was shown that “subjects
are able to perceive certain simple displays . . . almost as soon as they have been intro-
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duced” (p. 23) and that with minimal amounts of training they are able “to identify
familiar objects and to describe their arrangement in depth” (p. 25). (Iran-Nejad and
Ortony, 1984, pp. 182-183)

Not only does the tactile system perform like the visual subsystem, but it
also shows a good deal of within-subsystem equipotentiality in doing so.
Finger-written letters can be identified almost anywhere on the skin,
although the “high resolution” — with regards to the number of tactile
microsystems available — finger tips can do so much more readily. In fact,
neuropsychologists use the failure to identify numbers written on the finger
tips as evidence of damage to the intact nervous system. How does the tactile
subsystem manage to perform like the visual system without any prior experi-
ence! Unless we are willing to acknowledge the existence of innate feature
detectors, letter detectors, number detectors, and object detectors everywhere
under the skin and beyond, we are forced to abandon the notion of specific
traces and accept the hypothesis of between-subsystem equipotentiality.

[t is interesting to note that the degree of between-subsystem equipoten-
tiality varies from subsystem to subsystem. The visual subsystem is more
equipotential to the tactile subsystem than to the motor subsystem while the
auditory subsystem seems to be more equipotential with the motor subsystem
than with the tactile subsystem. It is much more difficult to dance to the pat-
terns created in the visual subsystem than it is to those created in the audi-
tory subsystem. It is also possible that there exist subsystems within the
nervous system that are equipotential to many or all other subsystems. In any
event, as Lashley (1929) argued and his evidence indicated, between-subsys-
tem equipotentiality is a matter of degree.

Equipotentiality of Neural Connections

The subsystems and microsystems of the nervous system are intercon-
nected by a vast network of neural pathways. It is often assumed by neural-
network connectionists (e.g., Sperry, 1943) that the neural network consists
of specific element-to-element connections, each of which is associated with
a connection strength (or weight) that determines the degree of activation
(or influence) a source element can exert on a target element.

Based on biofunctional schema theory, Iran-Nejad and Ortony (1984)
argued that there is another alternative. It is the specialization of the brain
microsystems and not the specificity of neuroanatomic connections that is the
basis for communication in the brain. Iran-Nejad and Ortony (1984) were
able to trace this nonconnectionist alternative to the work of Weiss {e.g.,
1936). Consider the following example: if a portion of the skin from the belly
of a salamander is removed and planted on its back, and if, after regeneration,
this skin (which is now located on the back of the animal) is stimulated, the
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animal proceeds to scratch its belly, the original location of the skin. Sperry
(1943, 1966) explained evidence such as this by postulating some sort of
chemical affinity between the peripheral cells (belly skin cells in this case)
and corresponding central cells (those commanding the scratching behavior)
that enables the former to trace their way back and reestablish specific con-
tact with the latter. However, there is no need for the reestablishment of a
new nerve line. According to the nonconnectionist hypothesis, all that has to
be reestablished is contact with the local nerves and, thereby, with the ner-
vous system as a whole. What makes the animal think that the belly skin is
being stimulated is the specialization of the belly-skin cells themselves,
regardless of their location so long as belly skin cells are connected to the
neural network as a whole.

Iran-Nejad and Ortony (1984) argued that the neural network is an all-
purpose communication system serving all brain subsystems and microsys-
tems (equipotentially). In other words, it is not a collection of specific
element-to-element connections representing associative links of varying
degrees of (synaptic) strength. Rather, it operates much in the same way that
the blood circulation system does — as an all-purpose network serving many
bodily subsystems. Consider, for example, the case of the endocrine glandular
subsystem. Endocrine glands release their products into the extracellular
fluid surrounding capillaries. These hormones then enter the blood circula-
tion system which carries them, as an all-purpose system, everywhere the
blood goes and not directly to their specific target organs.

Fot instance, ACTH is released in the anterior pituitary gland, located on
the lower part of the brain. This hormone stimulates the cortical adrenal
cells located above the kidneys. A direct duct could have been used by the
system to carry ACTH from its source to its target organs but, “if a tube were
to be available from every endocrine gland to its target organ, organisms
would become monstrously complex” (Iran-Nejad and Ortony, 1984, p. 182).
A much more elegant way to solve the problem is to use the all-purpose, all-
serving, and all-spreading blood circulation system. The hypothesis, proposed
in the context of the biofunctional system, that the neural network is an all-
purpose communication network is consistent with Lashley’s (1929) notion
of equipotentiality of neural pathways stating “that the interruption of asso-
ciation or projection paths produces little disturbance of behavior, so long as
cortical areas supplied by them remain in some functional connection with
the rest of the nervous system” (p. 175).

Learning and Remembering as Multisource Phenomena

Association, as the most basic unit of learning, has been a long-lasting
assumption in psychology. In its most sophisticated form yet, associationism
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is gaining widespread acceptance in the form of PDP connectionism, which
defines knowledge as connection weights among specific (localized) groups of
units and learning as changes in those connection weights. The biofunc-
tional distributed learning and remembering model, on the other hand,
assumes that learning is not the establishment of specific connections.
Rather, even the simplest meaningful act of learning involves the participa-
tion of many brain subsystems and many factors. In other words, the creation
of image-like within-subsystem mental displays (i.e., group distribution activ-
ity) cannot be considered meaningful learning. The meaning of a mental dis-
play in a given subsystem is the combination of all the displays that occur in
other subsystems simultaneously. The more subsystems involved, the more
complex the meaning. This is one sense in which learning and remembering
may be viewed as distributed.

Another sense in which the term distributed may be examined is that the
factors that contribute to learning are distributed. In other words, according
to the BDLR approach, external information is not the only source of learn-
ing. Learning is a multisource phenomenon (Bereiter, 1985) and by far the
majority of the sources that contribute to any meaningful act of learning or
remembering are internal sources (Iran-Nejad, 1989a, 1989b).

Among the major sources contributing to BDLR are those that regulate
the functioning of the system. According to the multisource hypothesis, the
locus of learning lies in the interaction of the sources of control and learning
processes. Traditional discussions of control generally consider two sources:
external and internal. Behaviorists assume that learning occurs passively
under the control of external stimuli. Learning of this sort can hardly go
beyond reactive attention, brief surprise states, momentary orientation to
events, local (or within-subsystem) combination, categorical knowledge cre-
ation, and piecemeal metacognition. It is clear, therefore, that by itself exter-
nal control can result in little, if any, meaningful learning.

The passive learning of the type postulated by behaviorism is often con-
trasted with active learning in conventional cognitive science. Active learn-
ing is said to occur under the conscious (or effortful) control of the
individual learner represented internally as the central executive. In this
sense, active control implies that the nonexecutive components of the
system are passive and cannot contribute to learning without executive mon-
itoring, that is, unless they are directly acted upon by the executive compo-
nent. This can be illustrated most clearly by Neisser’s (1967) original analysis
of (re)construction in the human information processing system in terms of
his dinosaur reconstruction analogy.

According to Neisser, people construct new schemas, or reconstruct old
schemas, by piecing together the stored fragments of their past schemas in
much the same way that paleontologists reconstruct the replica of a dinosaur
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by piecing together bone fragments of an extinct dinosaur. Neisser’s analogy
suggests that there is one and only one source that regulates the process of
knowledge construction (i.e., the executive control), in the same way that
there is one and only one source that regulates the process of dinosaur recon-
struction (i.e., the paleontologist). The other components that participate in
information processing construction (i.e., Neisser’s abstract schema and the
concrete content that fills the slots of the abstract schema) are static and
passive in much the same way that the bone fragments and the mortar used
in dinosaur reconstruction are static and passive.

The BDLR model, on the other hand, implies that it is highly unlikely
that DLR is under the exclusive influence of active (or executive) control. It
can, on the other hand, occur readily under the exclusive influence of
dynamic control and optimally in a multisource fashion: under extensive
dynamic, proper active, and optimal external control. Dynamic control is
responsible for what is generally known as incidental learning, learning with-
out knowing, and nonstrategic learning.

There are a number of ways to contrast the two internal sources of control.
Active internal control is effort-mediated while dynamic internal control is
interest-mediated. This aspect can be most cleatly illustrated in terms of
inquiry processes of the system. Under active internal control, inquiry pro-
cesses take the form of strategic questioning based on effortful thinking. The
more effort we apply, the more questions we end up asking ourselves or
others. Under dynamic control, inquiry processes take the form of curiosity
which is often viewed as being synonymous with interest (Berlyne, 1974).
When multiple sources are at work, the person can sustain an exploring or
investigative attitude.

Secondly, active and dynamic control may be contrasted in terms of
intralevel and interlevel functioning of the system. Active control is
intralevel in that it is encapsulated within the realm of mind-mediated
strategies and plans. It is the type of control that is implemented effortfully
and strategically by the person. Dynamic control is also intralevel at the
level of the brain; subsystems and microsystems of the brain directly regulate
learning processes. Dynamic control depends on the biofunctional properties.
For instance, the more equipotential the brain subsystems (e.g., the auditory
and motor subsystems as opposed to the visual and the motor subsystems) the
more readily they tend to work together (e.g., as it happens in dancing to
music). Multisource self-regulation tends to be interlevel, when the three
sources of self-regulation combine forces in the brain—mind cycle of reflec-
tion (see Iran-Nejad, 2000, this issue). The idea here is that the individual
gains control over the components of his or her nervous system (i.e., its sub-
systems and microsystems) much in the same way as he or she has control,
for instance, over his or her own limbs and fingers.
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Under many circumstances, dynamic control follows active control so nat-
urally that the contribution of the former is taken for granted. But it is not
difficult to show that execution of active control is likely to be nearly impos-
sible without the contribution of dynamic control. First an analogy. Imagine
trying to steer a car with power-steering when the power is off. Normally, the
individual driver exerts active control; but the power in the steering provides
something analogous, roughly speaking, to dynamic control. When dynamic
control is off, active control is difficult if possible at all. A situation very sim-
ilar to power-steering is trying to move one’s arm when the arm is asleep.
Since the individual is awake and can readily control other parts of the body,
the active control system is functional. What hampers the movement of the
arm that is asleep is the missing contribution of dynamic control.

Summary

This section discussed distributed learning and remembering in the context of
Lashley’s (1929) work and biofunctional cognition (Iran-Nejad, 1980; Iran-
Nejad and Ortony, 1984). The biofunctional model assumes that brain compo-
nents are specialized subsystems and microsystems, as opposed to a patchwork of
regions, centers, areas, nerve segments, or chemical particles. Brain microsys-
tems are distributed, with regard to their physical location, in localized groups
or in widely-scattered constellations. Lashley’s concept of equipotentiality was
analyzed biofunctionally in several different ways. We argued that equipoten-
tiality and specialization in the nervous system are compatible. Indeed,
although equipotentiality contrasts with specificity of memory traces, it is com-
patible with the specialization of brain subsystems and microsystems. Our analy-
sis showed that Lashley did not certainly go too far, as some have claimed, in
assuming equipotentiality. Factors that contribute to learning and remembering
have their origin in different sources of control and learning processes and any
act of learning occurs under the simultaneous influence of many factors. In this
sense, learning and remembering are multisource phenomena.

Conclusions

This paper examined distributed learning and remembering (DLR) from
the perspectives of parallel distributed processing (PDP) connectionism, the
DLR foundational research, and a biofunctional model of mental function-
ing. A number of tentative conclusions may be drawn based on this analysis:

1. Parallel distributed processing connectionism and DLR foundational
research are paradigmatically incompatible.

2. To our understanding, the only interpretation possible of the term dis-
tributed in the context of PDP connectionism is with reference to a one-to-
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many relationship in which one refers to a mental macrounit and many refers
to a localized group of mental microunits (intralevel group distribution).
Intralevel group distribution may be contrasted with a similar interlevel defi-
nition of the term in which one refers to a mental unit and many refers to a
localized group of brain microsystems (interlevel group distribution).
Intralevel group distribution faces the insurmountable problem of reduction
implied by the Gestalt idea that the whole is more than the sum of its parts.
Interlevel group distribution does not face this problem.

3. Interlevel group distribution occurs within particular brain subsystems
and provides the basis for generating image-like mental displays that are not
meaningful by themselves. Meaningful mental phenomena are created and
upheld by distributed constellations of brain microsystems whose members
are scattered in various subsystems throughout the nervous system (interlevel
constellation distribution). In this sense, the meaning of a within-subsystem
mental display is the combination of mental displays created and upheld
simultaneously in all other brain subsystems.

4. An important concept related to DLR is Lashley’s (1929) notion of
equipotentiality. Parallel distributed processing connectionists have found
this notion problematic mainly because it runs counter to the postulation of
specific traces which are inevitable in connectionism. Our analysis of this
concept in terms of biofunctional cognition suggests that there is nothing
wrong with Lashley’s equipotentiality hypothesis.

5. In the biofunctional approach, the term distributed refers to the location
of brain microsystems in the three-dimensional nervous system. There is,
however, another related sense in which learning and remembering may be
viewed as distributed. In this sense, the factors that contribute to learning
and remembering are distributed in that they come from many different
internal and external sources. Learning and remembering are not responses
to a single external source of input. They are truly multisource phenomena.

The biofunctional approach to DLR explains Lashley’s (1929) findings and
is compatible with other foundational DLR research (John, 1967, 1972). The
origins of the approach even go beyond the immediate boundaries of DLR
literature and extend into the broader realm of nonassociative research rep-
resentative of the work of Dewey (1896), Angell (1907), Head (1920), and
Bartlett (1932). In this broader form, the approach promises to serve as a
solid foundation for the study of how the brain creates and upholds the mind.
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