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Corresponding correlations is a method that allows us to infer formal causation from
correlational data. In this paper, causal terms are traced to their philosophical and ety-
mological roots. It is argued that causes are parts of their mutual whole (effect).
Nominalism, normal distributions and disjunctive causes are linked. Causal manifolds
and sampling by potential are used to model conjunctive causes. Corresponding corre-
lations are then demonstrated through simulations, in which causal relations are differ-
entiated from spurious correlations. An algebraic method for unraveling confounded
variables is presented. Distinctions between laws and causes are made and related to
corresponding correlations. The conclusion is that corresponding correlations should
be a significant advance in causal inference.

This paper is an introduction to corresponding cortelations and demon-
strates the principles that undergird corresponding regressions. The first part
of the paper addresses issues in the philosophy of science that have diverted
scientific attention away from the possibility of causal inference from correla-
tions. The second part explains how such inference is possible. Corresponding
regressions (Chambers, 1991) is a method by which the asymmetrical logical
relations between causes and effects are inferred without recourse to experi-
mental manipulation, quasi-experimentation or to traditional structural
equation modeling. Corresponding correlations and corresponding regres-
sions are framed in classical ontological terms that afford precise epistemo-
logical and arithmetic definition for causal inference. Whereas most
statisticians and researchers assume the inference of asymmetrical functional
relations is impossible without experimentation, corresponding correlations
and corresponding regressions demonstrate that this forbidden inference is
possible, given proper conceptualization, sampling and calculation.
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2100 NW 53 Avenue, Gainesville, Florida 32653.
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The mathematics of corresponding regressions/correlations is deceptively
simple — a characteristic that may slow its acceptance in the development
of ideas, although most researchers admit that the inference of causation
from correlations would be a great advance in statistics. Many assume such
inference to be categorically impossible while a few researchers hope that an
extremely complicated equation may yet be developed that solves the prob-
lem. The structural equations discipline (Loehlin, 1987) seems to hope for a
complex equation and has developed a taste for arcane mathematical proce-
dures, producing a plethora of methods, with none standing clearly above the
rest, and none allowing inference of causation without experimental manipu-
lation. Reaction to corresponding regressions/cotrelations can be summarized
as “The math can not be that simple!” Although the equations may actually
be simple, the logic required to understand the method is complicated.!

Logic and Experiment in Causal Inference

The logical asymmetry of causation rests in the “part to whole” relation-
ships existing between independent (IV) and dependent variables (DV). As
parts, independent variables are structurally simple (L. sine plex, without dou-
bling or folding). Effects, on the other hand, are complex wholes ( L. con
plecto, to double, to weave, to fold). By composition (L. con positus, to set
together), processes comparable to arithmetic operations (+, —, * , /) weave
parts into complex dependent variables. These combinations (L. com binus,
to double) produce wholes that are dependent on their parts (L. pars, to sep-
arate). The parts are operationally (L. operor, to make, do or form) composed
into wholes, by rules of logic and principles of form.

Aristotle (see Rychlak, 1981) referred to four types of causes: the material,
formal, efficient, and final. Each of these four causes contributes to the con-
stitution of substances. The material cause concerns the undifferentiated stuff
of which substances are composed. Lacking concrete existence on its own,
materia prima nonetheless has infinite potential. It can acquire an infinite
variety of forms. Formal causes are the attributes that define (L. de finio, to
limit) the infinite potential of prime material. These definitions include
shapes, qualities, operations and other abstract forms. Substances are said to
be hylemorphic (G. hyl morphe, combined form), that is, they are composed of
both material and formal causes

Hylemorphism implies the combination of matter and form through opera-
tions that constitute asymmetrical orders of inclusion. Being hylemorphic,
the constitution of substance includes both form and material. However,

IThe 1997-98 archives of the internet group SEMNET contains an extensive debate on cor-
responding regressions. Access the archives at http:bama.ua.edufarchives/semnet.html
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pure material (materia prima) and pure form (numbers, angels), on their own,
do not imply substance. Matter and form have their own being independent
of substantive existence. Consequently, hylemorphic wholes (substances)
include parts but these parts do not include the substantive wholes that they
constitute. Such constitution by inclusion is illustrated by the classical syllo-
gism.

The syllogism (G. syn logizesthai, together reason) is a logical form that
expresses necessary conclusions that follow, by definition, from several
propositions (L. proposito, to put or to throw forward). The syllogism consists
of three parts, the major premise (All men are mortal), the middle term
(Socrates is a man), and the conclusion (Socrates is a mortal). In this syllo-
gism, Socrates logically implies man, which in turn implies mortal. Socrates
is the more complex construct, while man and mortal are respectively more
simple and universal in their application. Socrates is tautological with man
and mortal, in that they are parts of Socrates by definition. But there is an
asymmetry in this order of inclusion. Although both mortal and man consti-
tute Socrates, neither of them logically implies Socrates, since some mortal
men are not Socrates. On the other hand, the substantive Socrates does
imply both man and mortal. The syllogistic asymmetry thus hinges on one-
way logical implications.

Historically, measurement of constitutional asymmetries has been problem-
atic because syllogistic definitions can become fanciful. To say “All men are
donkeys. Socrates is a man. Therefore Socrates is a donkey” is a formally
valid but substantively fanciful syllogism. It is based on premises that are
stipulated without material grounding. In science, there must be something
to link the premises of syllogisms to observable facts. For the last few cen-
turies, most people have believed that only experimentation can make this
link.

Francis Bacon (1620/1989) championed the cause of experiments and
induction in his sixteenth century book Novum Organum. He insisted that
premises must be more than the mere opinions of individuals or groups. The
root of the word stipulate (L. stipes, crowd) concerns propositions made by a
collection of people. In Bacon’s time the stipulating crowd consisted of the
church fathers, who taught Thomas Aquinas’ revision of Aristotle (see
Russell, 1972). This revision occasionally stretched the limits of sensibility,
for example, by challenging even the notion of hylemorphism, through
declaring that angels exist without substance. These and more mundane
propositions led Bacon to catalogue sociological and psychological factors
that mislead scientific inquiry. He referred to these as the Idols of the Tribe
(species-wide illusions), Den (personal misconstructions), Market Place (fal-
lacious social attributions), and Theatre (theoretical errors). Bacon argued
that there must be a tractable correspondence between ideas and events and
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he suggested that experiments and induction, rather than deductive logic,
were the best means of drawing these connections. Of course, history has
shown that experiments do help define the asymmetries in experience.
Experiments tell us that manipulating a cause changes an effect while manip-
ulating an effect does not change a cause. Experiments thus reveal asymme-
tries that may, in turn, support the syllogisms of scientific theories. The use
of experiments, however, de-emphasizes formal causation while tipping the
hylemorphic balance over to material causes.

As appealing as Bacon’s philosophy of experimentation was to physical sci-
entists, astronomers faced seemingly insurmountable challenges in inferring
causation. Experiments on heavenly bodies were impossible although system-
atic measurements of the heavens had been made since before recorded his-
tory. Whereas these observations had allowed for predictions of even rare
events, such as solar eclipses and comets, the understanding of the heavens
was still very much an abstract logical endeavor. The Copernican theory
challenged Ptolemy’s views through an intellectual reconstruction of ancient
observations (see Russell, 1972) instead of by an experiment. There were no
physical manipulations, only a more creative intellectual vision and more
consistent mathematical models of the heavens. Consequently; it was to
mathematics and logic that the non-experimental sciences turned to provide
structure to their observations. This movement toward abstract models
reached a high point with Newton's theory of gravity, which was made possi-
ble by the newly invented discipline of calculus.

With calculus came a language of functions and later, of correlations, that
helped track changes in place and the variations of form. Functions, however,
failed to disclose asymmetrical relations (Bunge, 1979). Even with functions,
the stipulation of “what was a function of what” was still a matter of specula-
tion, not of inductive certainty. Functions still required the genius of a
Newton and without such intelligence, function models were likely to be mis-
directed by the Idols of the Tribe, Den, Market Place and Theatre. As Bacon
(162071989, p. 149) suggested “It is only for God, and perhaps for angels or
intelligence at once to recognize forms affirmatively at first glance of contem-
plation.” Although near-angelic intelligences, such as those of Newton, were
very rare, Newton's example did spawn refinements of the mathematics of
functions and probabilities by such men as Bayes, LaPlace, and Gauss (see
Stigler, 1986). These refinements, however, were insufficient to replace the
subtle contemplation of genius. The mathematics of Gauss and others could
not inductively reflect asymmetrical functions “at first glance.”

Perhaps frustrated by their inability to infer asymmetrical forms, Gauss and
others turned their attentions to developing a theory of measurement error. If
they could not directly contemplate the forms of angels and abstract causes,
they would at least facilitate a consensus on what they could measure. Gauss




CAUSATION AND CORRESPONDING CORRELATIONS 441

studied the characteristics of mistaken observations, as might happen, for
example, when two astronomers disagree on the location of a particular star
at a certain time.? It was soon discovered that measurement errors tended to
be normally distributed and that these “personal equations” had systematic
effects on the correlations and functions that were used to model phenom-
ena. Correlations were subsequently expected to serve as indices of both reli-
ability and validity, as detailed in the classical theory of true scores
(Nunnally, 1978). Interpreting the meaning of functions and correlations
soon became very complex since the assumptions of normal measurement
errors were confounded with the mechanics of uniform functions. This con-
found is most clearly expressed in modern structural equations modeling.

In their primer for structural equations modeling, James, Mulaik, and Brett
(1982) suggest that asymmetrical functional relations are essential for causal
inference. They also admit that there are no received non-experimental sta-
tistical methods for determining asymmetrical relations. Structural equations
are still just systems of functions stipulated a priori as theoretical propositions
or opinions. The advances provided by structural equations are largely refine-
ments in analyzing systems of functions that tap latent variables and in pro-
cedures for analytically decomposing correlation matrices, according to
theoretical models. But the roots of these refinements are found in classical
true score theory and multiple regression analysis, which, in turn, are traced
back to Gauss.

It is not surprising that working from essentially the same assumptions as
Gauss, structural equation researchers were greatly concerned with the
effects of measurement error on theoretical models. It is as though
researchers from both eras said, “It is true that we can not determine causal
structures even with perfect observation but we can at least patch up nonsen-
sical inconsistencies in what we can observe.” This reaction essentially
changed the subject from “What is the valid causal model?” to “Can we all
agree on what probably exists on a concrete level, below the insights of
angels and genius?” As with the philosophers of previous centuries, the
mathematicians of measurement error, from Gauss up to Joreskog and
Sorbom (1984), implicitly focused their frustrations around the question of
“What is nonsense?” A review of even earlier debates will help clarify the
ancient and modern entanglements of this thorny question.

Although questions of “How many angels can stand on the point of a
needle?’ can lead to refined mathematical notions, such as those of Cantor
sets and nested infinite series (Russell, 1993), there is much room along the
way for nonsense. The Inquisition and its peculiar studies of fallen angels

Boring (1950, p. 134) tells the story of the Greenwich astronomer Maskelyn, who fired his
assistant, Kinnebrook, for observing stellar transits almost a second later than Maskelyn.
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provided many examples of such nonsense. Fear of colluding in or running
afoul of nonsense kept many mathematicians from even contemplating the
non-experimental perception of forms. They chose to model more concrete
forms, thus avoiding the punishments suffered by Bruno and Galileo.
Eventually, however, ridicule of the idea of immaterial forms (angels) served
as a common spott for those whose interests were worldly and driven by the
senses. “Just how much sense can form make anyway, compared to material
reality? We can all agree a lump of gold is gold but we will disagree about
angels and other abstract forms forever.”

In the Middle Ages (see Robinson, 1981), questions concerning the reality
of pure form led to a great debate between the nominalists (who believed
universal predicates were merely names) and the realists (who believed
abstract universals were real in some sense, as were angels). The nominalists
did not believe in the literal reality of the properties and operations that
make up formal causes, any more than they believed in angels. These proper-
ties seemed to fall outside the purview of common sense. No mathematics
existed to demonstrate such inclusive relations inductively and no experi-
ments could grasp the subtle natures of formal causes. With the gradual
waning of church authority in the Middle Ages, universal abstractions
seemed ephemeral and immaterial. Forms, such as taxonomic hierarchies had
been handed down by authority figures and could not satisfy the rising force
of liberal individualism and commerce.> As the authority of the church
diminished, alternative theories of causation arose. In the fourteenth cen-
tury, William of Ockham translated his liberal politics into an epistemology
that emphasized attention to particular effects instead of contemplation of
general {catholic) abstract causes. He went on to challenge the notion of
abstract causes as in the statement below.

There is no unitary, unvaried or simple thing in a multiplicity of singular things nor in
any kind of created individuals, together and at the same time. If such a thing were
allowed, it would be numerically one; therefore, it would not be in many singular
objects nor would it be of their essence. (ca. 1340/1955, pp. 873-874)

By these words, Ockham denied the authority of major premises, such as “All
men are mortal,” and shifted the focus away from catholic forms onto con-
crete individual objects. The result was a constriction of the range of legiti-
mate topics of scientific discourse, disguised as an appeal to parsimony. The
nominalists simply defined away the authority of abstractions by letting

SFor example, in the Divine Comedy, Dante provides a model of the universe for classifying
men and angels.
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nature’s individual and concrete objects stipulate the focus of scientific
inquiry. Perception in the form of measurement/sampling would cast the
premises of syllogisms while manipulation would define the order of causal
inclusion. Ockham’s Razor had made a deep cut for the sake of parsimony
and concretism. Francis Bacon expanded this outlook.

The syllogism consists of propositions, propositions of words; words are the signs of
notions. If therefore, the notions (which form the basis of the whole) be confused and
carelessly abstracted from things, there is no solidity in the superstructure. Qur only
hope, then, is in genuine induction. (1620/1989, p. 107)

Bacon argued for generalizing from particulars (induction) as a means of
avoiding deduction based on vacuous (authoritative) premises. But induction
on its own, without the guidance of angels or genius, tends to be haphazard
and full of measurement errors. Bacon knew this but believed that the exper-
imental manipulation of objects would focus the scientist’s mind. This exper-
imental focus would protect against the Idols of the Tribe (haphazard
perception) and against the Idols of the Theatre (erroneous theory). Reliable
experimental manipulations were Bacon’s way of grounding premises in real-
ity. He traded subtle abstract forms (logic) for reliable actions (experiments).

The nominalist attraction to the concrete and particular, transformed sci-
entific perception into a type of statistical sampling that severely limited
generalization. Following Ockham’s direction, the nominalists’ sampling
focused on particulars, such as the individual man Socrates, as he stands
before us, rather than studying the propagation of universal predicates, such
as the classes of man and mortal, across groups of individuals. Behaviorists
(Johnston and Pennypacker, 1980) carry this philosophy to its extreme and
question the use of any cross-sectional design. They advocate n=1 studies,
claiming we only learn about organisms by studying the changing properties
of individuals. Cattell and Cross (1952) showed, however, that the same per-
sonality factors emerge from both cross-sectional studies (R-technique),
based on groups, and from n of 1 (P-technique) studies, based on individuals
across time. Thus, neither sampling strategy is without merit when nature
presents us with hylemorphic wholes, such as the man Socrates or with larger
samples of such whole individuals. The nature of all men tends to be
reflected in each individual man. A problem occurs, however, when that
which our sample throws before us is not a coherent whole but a collection
of disparate sensations. Within the chaotic flux of the senses, we tend to
become preoccupied with measurement errors as a means of obtaining con-
sensus on what we can see. Such consensus seeking, however, predisposes us
to the Idols of the Market Place, as evidenced by studies of attribution and
influence (see Chialdini, 1984). The upshot is that the search for wholes is
particularly problematic for those who would infer causation without manip-
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ulation, since there are no apparent criteria for determining part/whole rela-
tionships in the haphazard flow of events.

The search for particular and concrete objects leads to a certain illusion of
wholeness. What immediately strikes the senses appears to be “the whole
story.” Most advocates of structural equation modeling sample by collections
that nature throws before them. By this haphazard process, nature and per-
sonal whim too often define the propositions that predicate the inquiry.
Piaget’s (1972) theory of intellectual development addresses the effects of
such syncretic perception. The child’s attention is fixated by irrelevant fea-
tures, akin to Bacon’s Idols. Piaget (see Flavell, 1963) found that maturation
beyond such random and egocentric fixations of attention only occurs with
the mastery of abstract logic that allows for the systematic sampling of
events. Lattice structures direct the mature child’s attention to all possible
forms, expanding the perspective beyond the haphazard and material, toward
the hylemorphic nature of substances. We shall return to this theme later, in
discussing sampling by potential.

In order to bring some stability to their observations, structural equation
researchers use rules of thumb, such as the assumption that where there is
correlation, causation is at least plausible. Other guidelines include archaic
statistical notions, such as the belief that normal distributions imply wholes.
It is well understood, however, that every correlation matrix can support the
plausibility of a near infinite number of causal models. This is not much to
grasp in the chaos of haphazard experience. Furthermore, the belief that
normal distributions indicate natural wholes was discredited soon after
Quetelet’s (see Stigler, 1986) initial enthusiasm for normal distributions. The
result is that structural equation modeling is an unstable endeavor, having as
its major appeal the investigator’s freedom to theorize at will, while main-
taining an aura of mathematical sophistication.

It is a curious twist of reason that haphazard sampling has led some
researchers to the erroneous belief that any systematic sampling is necessarily
experimental. This mistaken belief goes further to claim that since structural
equations are non-experimental they must not be based on systematic sam-
pling designs. In other words, structural equations are natural and
unplanned; experiments are systematic and contrived. This argument has
been used against corresponding regressions, which stresses systematic sam-
pling but without experimentation. Opponents claim that corresponding
regressions is a type of experimentation, even if no physical causes are
manipulated. In fact, however, sampling may be systematic and still not
experimental, since we may logically sample from nature without actively
manipulating causes. An experiment requires manipulation of a cause to
bring about changes as an effect. Systematic sampling is an altogether differ-
ent type of process. We may not be able to experimentally manipulate subtle
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abstractions but we can sample such variables systematically, looking for all
the possible combinations of the causes in order to map the full phe-
nomenon. Piaget (see Flavell, 1963) linked such systematic construction to
formal operations. It will be shown that sampling by formal operations is
especially promising because it makes possible the inference of causation
without manipulation.

Those who advocate haphazard sampling procedures tend to let the cir-
cumstances of sampling stipulate their theoretical premises. Such induction
is at best naive. Causal functions are not essentially distributions. They may
be instantiated but the resulting incidents are accidental in that very differ-
ent distributions may be thrown by the same causal function. The instantia-
tion depends on what causal values are passed to the function. Few if any
structural equation samples uniformly cover the whole abstract range of vari-
ables. But even an extremely rare incidence, for example, the pairing of
extremes from two otherwise normally distributed variables, point to latent
underlying uniform causes.

To the realist, thrown distributions were merely the mixed up shadows of a
haphazard collection of different variables, as illustrated in Plato’s analogy of
the Cave. Thrown distributions were viewed as accidental (L. accidens,
falling from). The realists knew that, like shadows on the wall of a cave,
instantiations may be only confounded variables, spuriously thrown together
but appearing as coherent material wholes to the senses. Such variables may,
in fact, have identities of their own, separate from the illusory material
wholes of coincidence and perception. Color, mass, electric charge, etc., exist
at some level of abstraction, independent of their instantiations in particular
objects. Because of this, the realist could conceive of causal relations as
stretching across a range of abstract possibilities, rather than simply across
some haphazard material (“natural”) sample. This gave the realist the edge in
discovery because he or she could use combinatorial analysis to create and
isolate causes and effects that did not yet materially exist in any sample.
Thus by the power of intellect, the realist could see beyond the information
given (see Bruner [1973] for an in depth treatment of the child’s going
beyond the information given).

Most structural equation researchers do not conceptualize substances as
hylemorphic. They ignore the manifold definitions of material that are pro-
vided by form. The “merely possible” sounds too much like a justification for
unobserved angels standing on the point of a needle, threatening a regression
to the Bonaventurian belief in spiritual matter and transubstantiation
(Brugger and Baker, 1972). Atomism and concretism, instead, seem to be no-
nonsense alternatives. But there are non-spiritual expressions of hylemor-
phism. Structural equation researchers forget the industry of biologists and
botanists searching the globe to fill in missing evolutionary possibilities in
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collections of specimens. Instead, most structural equation researchers place
their trust in the auguries that nature throws haphazardly as material sam-
ples.

Some structural equations users may respond at this juncture that sampling
need not be haphazard and that some (quasi-experimental) measures reveal
asymmetrical relations independent of formal logical analysis. Time is most
likely to be the champion of this argument:

Causes come before effects. Effects never follow causes. Time at least narrows the field
of possibilities. The sophisticated mathematics of fit indices can shore up the rest.

This argument is wrong because formal asymmetries may exist even if
part/whole compositions occur simultaneously or have always existed.
Because it takes no time for 2 to equal 1+1, time is not of the essence of
formal asymmetrical relations. Definition by inclusion, however, is funda-
mental to all part/whole relationships. The primacy of form over change does
not mean temporal sequences do not exist. Aristotle defined efficient cause as
the process of becoming from one form to a contrary form across time. But as
substances change across time, even the changes have form. When a carpen-
ter assembles a house he or she engages in an efficient cause transformation
across time. At every point in the sequence, the production has form and
substance, making form more fundamental than time and change. Efficient
cause may be the foundation of experimentation but formal cause is the
foundation of efficient cause. This underscores the primacy of logic over
experimentation.

In summary, science grew up from Aristotle’s attempts to systematize both
logic and the classification of natural objects. Followers of this approach
could use deductive logic, based on abstract premises (taxonomies), handed
down by authorities. With the unrest that followed political and economic
liberalization of the church state, nominalists turned to induction and gener-
alizations derived from material particulars. The experiment eventually
proved to be a highly productive means of inferring causation.
Unfortunately, those disciplines that could not manipulate objects could not
use experiments to determine asymmetrical relationships. The problem con-
tinues today. Structural equation researchers attempt to bypass experimenta-
tion by using correlations to choose between competing deductive causal
models. But there will always be more than one plausible model supported by
the data, since traditional correlations are symmetrical. Corresponding
regressions/correlations provides a third path to causal inference, one that
avoids the ambiguities of correlations and the concretistic constraints of
nominalism, while allowing a hylemorphic model of causation.
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Causal Manifolds and Sampling by Potential

Formal causation concerns the definition of a substance or process by the
combination of independent components: features, qualities, properties, etc.
The systematic perception of component parts requires an algorithmic elabo-
ration of nature, one that Chambers (in press) [with due reference to Piaget
and Bruner] called sampling by potential. In this sampling strategy the inves-
tigator looks beyond the immediate material sample, into all the logical pos-
sibilities. This strategy is comparable to what the biologist does when
venturing far afield to discover an unknown but logically possible species.
Such research requires greater industry in sampling than is common in most
behavioral sciences but it promises a fuller view of the causal possibilities.

Sampling by potential is primarily concerned with causes as arithmetic
sequence functions (see Wells and Tilson, 1997, p. 87). In arithmetic sequences,
the first differences between consecutive terms are constant. This allows for
operations that are invariant to additive constants. The difference x1—x2 is the
same as the difference (a+x1)~(a+x2). Consequently, linear equations maintain
across the entire ranges of their variables, since we can generate a range by
simply adding progressively greater constants to consecutive variables. We gen-
erate a uniform linear range by multiplying n by a, in the equation
(an+x1)—(an+x2). The difference will remain the same across the ranges so
long as a and n are the same values for both x1 and x2. This sameness allows us
to generate wide, uniform ranges of x1 and x2.

The constancy of first differences characterizes causal relationships that are
said to be conjunctive (Bunge, 1979). Conjunctive causes concern arith-
metic operations that generalize across the entire ranges of the x variables.
To get equivalent first differences, however, it must be possible to keep the
constants a and n equivalent for both (an+x1) and (an+x2). This does not
happen with normally distributed causes, since there are very few if any inci-
dents in which extreme values of x1 are combined with extreme values of x2.
The reason for this is that extreme values of either x are very rare, even
when matched with average values of the other x. Their combined occur-
rence (equivalent values for a and n for both xI and x2) are so rare that
inductive samples fail to reflect the property of the equivalence of first differ-
ences. The result is the equation y=x1+x2 rarely or never maintains for
extreme values of x1 and x2 because these extremes are rarely or never com-
bined in the cause. Thus, in effect, normally generated causes only allow dis-
junctive causal relationships, in which extremes of y tend to be largely due to
either an extreme x1 or an extreme x2 but not to extremes of both x1 and
x2.

Using uniformly generated values of x1 and x2 allows a conjunctive causal
relation, whereas normally distributed values force a disjunctive relation.




448 CHAMBERS

This is a problem found throughout statistics. Indeed, most of structural
equations modeling is based on the assumption that all variables should be
normally distributed, thus implying all causes are sampled as disjunctive and
not instantiated as linear sequences. The preference for normally distributed
variables goes back to Gauss and models of normally distributed random
errors. To correct for this disjunctive problem, users of structural equations
should collect uniform samples of putative causes. Such uniform samples are
rarely collected, however, because researchers do not know which variables
are causes and which are effects. Furthermore, the standard probability tests
are designed for normally distributed variables. As a result, the failure to ade-
quately sample causes obscures basic properties of linearity in the data.
Because of the way corresponding correlations works, however, we do not
ignore the distinction between conjunctive and disjunctive causes.

Table 1 simulates a causal process based on linear sequences. It was gener-
ated by the additive conjugation (combination in all possible ways) of two
independent variables (x1 and x2), each having eight levels. The additive
conjugation produces the manifold of all possible joint instantiations of the
independent variables, allowing for conjunctive causes and the first differ-
ence property. This conjugation should not be viewed as part of the corre-
sponding correlations analysis but merely a simulation of conjunctive
causation. If the investigator samples uniformly across uncorrelated causes,
the sample space will tend to recover nature’s latent manifold combinations,
making corresponding correlations analysis possible by induction.

The manifold is a map of the products of operations that are applied across
the whole logical ranges of the causes. Due to the central limit effect, the
dependent variable (DV) lacks the uniformity of the IVs and tends toward a
triangular distribution. This is because there are more ways to generate mid
versus extreme ranges of dependent values. For example, if our causes are
based on five-point scales (allowing the effect to range from 2 to 10), we can
compose the midrange effect “6” in several ways: (6=5+1=3+3=4+2 etc).
The extreme effect “10,” however, is only generated by (10=5+5).

Some researchers have suggested that the mere presence of uniform and
triangular (normal) correlates is sufficient for causal inference but this is not
so. The normal variable may be only spuricusly correlated with the uniform
variable. Their correlation may be random or incidental to a mutual common
source in a third variable. The differences in their distributions may also be
due to unrelated environmental constraints. We must look deeper than just
the given material distribution to see the logic of the causal connections.*

4The assumption that IVs are potentially uniformly instantiated is consistent with the prac-
tice of using equal cell sizes across the factors of an ANOVA.,
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Table 1
8%8 Addition Manifold

Parts + Parts=Wholes

x]+x2=y x1+x2=y x1+x2=y x1+x2=y
1+1=2 2+1=3 3+1=4 4+1=5
1+2=3 2+2=4 3+2=5 4+2=6
1+3=4 2+3=5 3+3=6 4+3=7
1+4=5 2+4=6 3+4=7 4+4=8
1+5=6 2+5=7 345=8 4+5=9
[ +6=7 2+6=8 3+6=9 4+6=10
1+7=8 2+7=9 3+7=10 4+7=11
1+8=9 2+8=10 3+8=11 4+8=12
5+1=6 6+1=17 7+1=8 8+1=9
5+2=17 6+2=8 7+2=9 8+2=10
5+3=8 6+3=9 7+3=10 8+3=11
5+4=9 6+4=10 7+4=11 8+4=12
5+5=10 6+5=11 T+5=12 8+5=13
5+6=11 6+6=12 T+6=13 8+6=14
5+7=12 6+7=13 T+7=14 8+7=15
5+8=13 6+8=14 7+8=15 8+8=16

The linear independence of variables x1 and x2 is reflected in their zero
correlation, even though they are exhaustively combined (conjugated) in all
64 possible ways. Correlations between Vs indicate confounded constructs
and should be perceived as measurement or sampling problems. If two con-
structs truly are independent, they should be capable of complete conjuga-
tion, at least in principle. When correlations between causes exist, it is
probable that disparate variables have been confounded by name, measure-
ment, sample and/or by nature. An example of the latter would occur when a
sour taste naturally accompanies a green color, then the taste and color are
aspects of a common underlying variable/process and can not be conjugated
as they are. They are not really independent parts but rather aspects of a
common latent process. Such confounding does place a limit on the useful-
ness of corresponding correlations (which assumes conjugation of indepen-
dent variables).

Avrtificial means, such as genetic alteration or the dyeing of apples, could
be used to expand the possibilities of the objects. These kinds of dialectical
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strategies have, in fact, been argued as central to scientific creativity (see
Rychlak, 1988). If creative steps are impossible, however, the investigator
can simply explicitly clump green and sour into a single construct, to be con-
jugated, as a unit, with other independent variables. This is what factor anal-
ysis does when used to extract variables with simple structure. Such latent
orthogonal variables are optimal for corresponding correlations. This topic is
discussed in more detail in Chambers (in press).

Corresponding Correlations

If nature produced its composites by only one operation, say addition, and
if our measures were true to nature’s scales, then causal inferences would be
as easy as determining which variable is the sum of which others. But insofar
as nature uses all four operations and because our measures are often not true
to scale, we can not read nature’s compositions so easily. We need means of
assessing the presence of composite wholes that arise from any operation and
from any scale of measurement.

The essence of corresponding correlations is that parts are correlated one
way in the extremes (upper and lower quartiles) of their composite and the
opposite way in the midrange of their composite. In the causal model
y=x1+x2 the values of x1 and x2 will be positively correlated toward the
extreme ends of y. High x1 plus high x2 equals high y (10=5+5). Low x1 plus
low x2 produces low y (2=1+1). In the midrange of y, on the other hand, we
find those opposite values of x1 and x2 canceling one another toward the
middle of y (6=5+1). Thus x1 and x2 are correlated negatively in the
midrange of y but positively in the extremes of y. This polarization of correla-
tions between x1 and x2 does not occur when we compare x1 and x2 across
the ranges of either x1 or x2.

Table 2 displays the squared correlations, retaining signs, between x1 and
x2 across the ranges of y, when y=x1+x2. Squared correlations are used
because they can be summed with other squared correlations. Squared corre-
lations form a linear scale, unsquared correlations do not. In Table 2, four
ranges and four samples are defined for each causal model. The extremes of y
were those values of x1, x2 and y that fell into the upper and lower quartiles
of y, after sorting all the data by y. Any “tied” values at the boundaries of the
quartiles were randomly distributed by the computer. The midrange of y was
created from the remaining values corresponding to the inner quartiles of y.
The extremes of x1 were those values of x1 and x2 corresponding to the
upper and lower quartiles of x1, after sorting by x1. Midrange x1 included
those values that correspond to the inner quartiles of x1. The samples were
created from manifolds, uniformly distributed random numbers and normal
random numbers based on n=100 per simulation.
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Polarity scores were formed by multiplying the squared correlations
(retaining signs) between x1 and x2 in the midrange of y with the squared
correlations from the extremes of y.> For example, the polarity of the 4*4
manifold is —.15=.26* —.59,

Table 2

Corresponding (Squared) Correlations Between x1 and x2 Retaining Signs

Average for 200 Replications
4*4 8*8 Uniform Normal
Manifold Manifold Random Random

Extreme of y .26 .34 33 12
Mid-range of y -59 -.65 ~.63 -53
Polarity -15 ~.22 20 —-.06
Extreme of x1 .00 .00 .00 .00
Extreme of x2 .00 .00 .00 .00
Polarity .00 .00 .00 .00

Polarity scores for all samples indicate the causal directions but the score
(=.006) for the normally distributed variables is highly attenuated. This three-
fold reduction in power demonstrates the impact of disjunctive causes. If the
extreme values are not adequately represented then the resulting disjunctive
causes are missed by corresponding correlations. Such causes implicitly vio-
late the first difference property of linear sequences, since the constants (a
and n) defining the scale in the equation (an + x1)—(an + x2) are rarely if
ever the same for both x1 and x2 with normal generations.

As expected, the polarities based on the uniform causes do allow us to infer
causation. The polarities created by sorting by the independent variables, on
the other hand, are zero. No polarization occurs across the ranges of x1 (or
x2). From these data we can determine that y is a composite of x1 and x2.
These facts contradict the long held assumption that causation can not be
inferred from correlations.

*In the subtractive model the correlarion in the extremes is negative while that in the
midrange is positive. But the polarization still occurs (—.5%.4=-.4%5). As shown in Chambers
(1991), the power of polarity scores will be reduced by lower correlations between the [V and
the DV and by correlations between the IVs.
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Uniformity Not Sufficient for Causation

With so much talk about uniform distributions, there is temptation to
think that all uniformly distributed variables will polarize as causes. This is
not true. Uniform sampling is not the source of polarization; the origin is the
combination of uniform variables. Uniform sampling of uniform causes only
improves the power of corresponding correlations. Uniform sampling does
not create the causes. This is illustrated by drawing uniform samples from
pre-existing triangular effects. Consider the 4*4 causal manifold. The vari-
able y is triangular and ranges from 2 to 8. There are fewer cases of extreme y
than of midrange y. A uniform sample of y can be created by using dupli-
cates, drawing an equal number of cases per level of y. Thus there might be
four cases for each of the values of y, ranging from 2 to 8, for a total of
28=4*7 cases in the sample. The y variable will thus be uniformly distributed
in the sample, although it is triangular in the causal manifold. Does corre-
sponding correlations, therefore, indicate that y is the cause of x1 and x2?
No. The polarity score across the ranges of uniform y is —.13, revealing that
the causes of y are x1 and x2. Thus, even though we sample y as uniform, it is
still determined to be the effect, not the cause.

Corrections Based on Artificial Variables

The attenuating impact of normal distributions can make it difficult in
practice to know if the absence of polarization is due to non-uniform combi-
nations or to the absence of causation. A test of the adequacy of a measured
distribution would be very helpful. Since there are a near infinite number of
intermediate distributions, between the uniform and normal, tables for evalu-
ating each distribution would need be very large. A simpler way to evaluate a
measured distribution is by creating artificial composites. Assume we wish to
determine if variables A and B are causes of C but find no significant polar-
ization. We can test to see if this is a distributional problem by simply adding
the z-scores of A and B to form C¥*. Since C*" is a perfect composite of A
and B, the polarization score for this data should define the upper limit or
ceiling for valid inference, making possible a correction based on the poten-
tial polarization for the given data. This same correction should be useful
when the correlations between the variables deviate from their maximally
efficient values (r=0 between IVs and r=.71 between DVs).

Further research on artificial variables is necessary. It is possible that even
with these corrections, some distributions will need to be filled out to unifor-
mity by collecting more data. The C* test should at least give some indica-
tion of which variables need to be better sampled.
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Spurious Correlations and Confounded Variables

Variables are easily confounded in the haphazard flow of events. Measures
often clump different phenomena together, with wholes being mislabeled as
parts and parts as wholes. Spurious correlations are an example of such con-
founding. Two variables may cotrelate with one another but have no direct
causal relationship. They may, for example, both be dependent on a common
cause, which forms the basis of their correlation. This can be simulated by
the model yl=x1+x2 and y2=x1+x3, in which x1 is the common cause of
both y1 and y2. Note, however, that y1 could be confused with either x1 or
x2, because it includes both. Similarly, y2 could be confused with either x1
or x3, since it contains both. Thus although y1 and y2 are correlated depen-
dent variables with no causal relationship between them as wholes, part of y1
(x1) does cause y2 and part of y2 (x1) does cause y1. This kind of complexity
is very difficult to track using structural equations modeling.

Table 3 contains average polarization scores for each of the variables in the
y1 and y2 model, based on n=100 with 200 replications of each model.

Table 3

Squared Correlations for Spurious Relations

Sorting by y1
Extremes of y1 Mid-range of y1
xI x2 x3 yl y2 xI x2  x3 yl y2
x1 1 x1 1
x2 31 1 x2 -.65 1
x3 -00 -.00 i x3 .00 -.00 1
yl g7 .18 .00 1 yl .12 .09 -.00 1
y2 54 18 46 42 1 y2 46 -30 .55 .06 1

Sorting by y2

Extremes of y2 Mid-range of y2
xI x2 x3 yl y2 x1  x2 %3 yl y2
x1 1 x1 1
x2 .00 1 x2 .00 1
x3 33 .00 1 x3 -.64 -.00 1
yl 5445 19 1 yl .46 .56 -30 1

y2 78 .00 .18 43 1 y2 .11 -00 .11 .05 1
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The squared correlation (retaining sign) between x1 and x2 in the
extremes of y1 is r2=.31. In the midrange of y! it is r?=—.64, producing the
polarization score of —.20=.31*~.64. In the y2 model the polarization score is
—.21=.33%-.64. These results are consistent with previous findings. The vari-
ables x1 and x2 cause y1 while xI and x3 cause y2. The table also shows,
however, that in the yl model polarization occurs with the correlations
between y2 and x2; 12=.18, r?=-.30, polarization = —.054. A similar configu-
ration occurs for the y2 model, in which y1 and x3 correlated 12=.19 and
r?=-.30, producing a polarity of —.057. These latter polarization scores
demonstrate the effect of confounded variables.

Algebra can be used to untangle the confounding in models y1 and y2.
Starting with model y1, Table 3 suggests:

yl=x1+x2 polarity= —.20= .31 * —.65
yl=x2+y2: yl=x2+(x1+x3) polarity= —.05= .18 ¥ —.30
y1 does not equal x1+x3 polarity= -.00= -.00 * .00

Therefore: yl=x2+x1, not yl=x2+y2.

Since x1 and x3 have zero polarity for y1, x3 cancels out. It is the x1 in y2
that appears to be causal, not the whole of y2. In a similar way, Table 3 sug-
gests the following for model y2:

y2=x1+x3 polarity= ~.21= .33% —.64
y2=x3+yl: y2=x3+(x1+x2) polairty= —.05= .19 * -.30
y2 does not equal x1+x2 polarity= .00= .00 * .00

Therefore: y2=x3+x1, not y2=x3+yl.

Thus the x2 cancels out in y2, illustrating that x1 is the true cause of y2 and
not the whole of y1.6

Algebraic expressions, such as those above, could be used with indefinitely
large data sets. The result would be a parsimonious delineation of inclusive
relationships that exist between several and diverse parts and wholes. To
experimenters, such data pose a serious challenge to programmatic research
but one that can be solved so long as the variables can be physically manipu-
lated and time is unlimited. For those who can not manipulate their variables
and know the press of time, corresponding correlations offers hope.

6In corresponding correlations {Chambers, 1991) this canceling process was done in the cal-
culation D=rde(y1)-rde(y2). The confound is circumvented because the rde values cancel
one another to zero.
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Universal Laws, Causes, and Reverse Causes

The most common objection to corresponding regressions has been the
belief that all functions are reversible. This argument suggests that because
(a=b+c) and {c=a-b) are logically consistent with one another as equations,
both are equally compelling as causal models. This argument often assumes
that we restrict analysis to scalars, that is, to single values of a, b and ¢. In
this case, the n for the sample is equal to 1 and the single case represents an
entire population, without variation across time or context. Such a sample
would describe a universe or population, in which both a=b+c and c=a-b are
tautological and contradictory! This might seem to hopelessly confound the
search for single causes but the situation is not that desperate. The tautology
actually defines a law, not a cause. Causes would require that the equations
define separate potential instantiations, across independent cases. The same
law, however, exists across different causal generations.

Consider Boyle's law of gases, in which the regular proportions of pressure,
temperature and volume are defined for a gas:

Volume = temperature/pressure
Temperature = volume*pressure
Pressure = temperature/volume

Boyle’s law does not define a cause but, instead, defines the potential forms
of various causes. Each equation above could be an independent causal func-
tion. Consider three causal models, each conforming to Boyle’s law. In the
first experiment there are 100 cases, with each being a collection of gases
having the same initial volume. The temperature and pressure of these gases
are manipulated according to manifold or uniform random conjugation. The
result will be that these alterations of temperature (IV1) and pressure (IV2)
will cause different levels of volume (DV). In the second experiment the
temperature (DV) is caused by conjugating different volumes (IV1) and pres-
sures (IV2). In the third experiment, the pressure (DV) is determined by
varying levels of temperature (IV1) and volume (IV2). Thus, across the three
experiments, the variables play different causal roles. Within each experi-
mental condition, a different causal model is developed. The n cases are the
material, that is defined by the particular lawful equation, that together con-
stitute the hylemorphic generation.

The variety of causes developed across the three experiments is made pos-
sible by the use of separate vectors of values instead of simultaneous scalars.
The values of the independent variables vary across the 100 trials per experi-
ment. It is from these vectors that we can articulate the causes as consistent
with the general law while having their separate histories or profiles. If a




456 CHAMBERS

researcher samples a simultaneous mixture of all the separate causes, how-
ever, corresponding correlations will indicate no cause at all. The different
causes will be confounded and cancel one another. It would be possible, how-
ever, to examine those cases that failed to fit the polarization pattern while
testing each variable as the hypothetical effect. Those cases that fit one
model (a=b+c) would not fit the alternative (b=a—c). Cases that fit one
model but not the other could be partitioned into separate groups. The
researcher could then examine the separate groups for characteristics that
would further distinguish the groups.

The above strategy might be called a mediation analysis, in which causal
interactions are investigated either by hypothesis or by exploratory strategies.
[f the data from the three experiments described above were thrown
together, we might find that the errors divide the cases into three groups.
Further inquiry might show that the data for each group were collected by
different experimenters. This would lead the researcher to further inquire as
to differences in the actions of the experimenters. The same search strategy
would work when dealing with non-experimental data. Instead of finding dif-
ferent experimenters, however, we might find different genders, ages, races,
disease status, and so forth for the groups. The mathematics of such
exploratory corresponding correlations would not be difficult but will not be
developed in this paper.

A final possibility of relevance to this section is reverse causality. This is
when two related root causal models {(yl1=x1+x2) and (y2=x1-x2) combine
to form a reverse cause (x1=(yl+y2)/2). yl and y2 are root effects generated
from the uniform generations of x1 and x2. yl and y2 will be uncorrelated
with one another and triangularly distributed. Adding y1 to y2, however,
recovers the original x1, thus reversing the root causation. This would seem
to be a paradoxical case that can not be resolved by corresponding correla-
tions. There will be, in fact, a polarization suggesting that y1 and y2 (effects)
cause x1 (their cause)! But the degree of the reverse causation polarization,
based on x1=y1+y2, will be less, on average, than it is for the root cause. The
average root polarization for 100 replications of sample size 100 was —.51,
std=.06. The average polarization for the reverse cause model was —~.23,
std=.06. The difference between these means is highly significant, t=30.32,
p.<.001, df=398. The greater polarization of the root model is probably due
to the fact that the reverse cause is based on causes that are disjunctive, thus
attenuating the negative correlation in the extremes of x1. These results
demonstrate that the polarization measure reflects both the root and reverse
causes while allowing us to distinguish between the two types of causes.
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Axiomatics and Psychological Measures

The arguments in this paper are largely based on mathematical axioms that
define ratio or interval scales. For example, the arguments concerning dis-
junctive and conjunctive causes derive from the axioms of linear interval
sequences. Michell (1997) has argued that because many psychological scales
lack ratio and interval properties, many statistical methods are used inappro-
priately in psychology. The problem arises because so little attention is given
to creating measures that conserve basic properties of numbers. This might
suggest that corresponding correlations and regressions expect too much from
psychological data. Are these methods robust to the degradation of nature’s
ratio and interval constructions to ordinal measures?

To test the robustness of corresponding correlations, the basic y=x1+x2
model was generated, using 100 observations per 200 replications. After gen-
erating the model, however, the values of x1, x2 and y were transformed to
ordinal ranks. The data revealed that the polarization effect remained strong.
The ranks of x1 and x2 correlated r?=.33 on average in the extremes of y and
r2=—.65 in the midrange of y. The average polarity score of —.21 is compara-
ble to that found without the degradation to ranks. Thus, so long as the data
were generated from interval data and only later degraded, corresponding
correlations worked.

Corresponding correlations should not work, however, if the causal model
is somehow generated from scales that are less than interval. Such phenom-
ena should not be modeled using arithmetic operations. Within the field of
psychology, such irrational processes probably do exist but the error is in
assigning them numbers at all. The numbers in some data may be so deficient
in basic numerical properties that it stretches the imagination to call them
numbers. Corresponding correlations may be of some use in distinguishing
such attributions from true numbers. Further research along these and
Michell’s axiomatic lines would probably be useful.

Corresponding Correlations and Structural Equations Analysis

Corresponding correlations/regressions contributes to structural equation
analysis by providing criteria for testing hypothesized causes. As the struc-
tural equation discipline stands now, hypotheses are developed from theory
or common sense. With corresponding correlations, theory will still be
important at the stage of selecting relevant variables but the mathematics
will inductively draw the causal arrows in the path diagrams. This will free us
from dependence on experimentation. Of course, corresponding correlations
could be used to test traditional deductive models of structural equations, as
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well. Deductive models may be less subject to cross-validation problems than
inductive models, but in either case, cross-validation should be used.

Conclusions

This paper has been an introduction to corresponding correlations. A
review of philosophies of causation suggests that there has long been a need
for non-experimental methods of causal inference. The absence of such
methods has shaped the development of science, making it more concerned
with concrete objects and less tolerant of abstract variables. The experimen-
talists looked to manipulation as the sensible alternative to intractable
abstractions. Astronomers and other researchers, however, could not utilize
experiments and were left dependent on intellectual insight. After failing to
develop mathematical methods for causal inference, Gauss and others turned
to refinements in measurement theory, leading many modern researchers
away from the uniformity of conjunctive causes and toward the non-lineari-
ties of disjunctive causes. A major thesis of this paper is that these philo-
sophical developments and derivative mathematical and scientific practices
delayed the inference of causation from correlations. These philosophies still
impeded the consideration, testing and acceptance of corresponding regres-
sions and corresponding correlations.

The second part of this paper addressed technical steps in the calculation
of corresponding correlations. It was shown that we may infer causal rela-
tions from correlations, including models with reverse causes. An algebraic
method was presented that untangles confounded variables and that could be
useful in directing programs of research. The advantages of corresponding
correlations over structural equation methods, such as LISREL and path
analysis, were argued. Corresponding correlations supports causal inference,
whereas, LISREL fails to resolve the ambiguity of correlations and is thus of
little use in inferring causation. Corresponding correlations could supply
important information each time correlations, regression analysis, factor
analysis or structural equations are used. Corresponding correlations should
someday precipitate major theoretical, clinical and educational changes, jus-
tifying further development of the method.

Future research might develop significance tables from the underlying cal-
culus of corresponding correlations. This should also improve the tractabil-
ity and efficiency of the method. For example, in recent simulations the
author found that the more narrowly the ranges are defined the greater the
polarization. That is, taking only the most extreme and most moderate
values when defining mid versus extreme ranges of the dependent variable,
systematically increased the degree of polarization. There was a loss of
sample size, however, in this approach. Future research might employ calcu-
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lus and linear programming to discover an optimal balance of sample size
and width of ranges.

Perhaps the greatest impediment to the further development of corre-
sponding correlations and regressions is the long held belief that it is impos-
sible to infer causation from correlations. Hopefully the current article will
bring us a little closer to seeing the possibility of causal inference from corre-
lations and the advantages that such inference should offer society.
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