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Evolutionary theory has yet to offer a detailed model of the complex transitions from a
living system of one design to another of more advanced, or simply different, design.
Hidden within the writings of evolution’s expositors is an implicit appeal to AI-like
processes operating within the “cosmic machine” that has hitherto been evolving the
plethora of functional living systems we observe. In these writings, there is disturbingly
little understanding of the deep problems involved, resting as they do in the very heart of
AI. The end-state requirements for a system, device, or “machine” with intelligence capable
of design are examined. The representational power must be sufficient to support ana-
logical thought, an operation demanding transformations of events in imagery, in turn a
function of perception, both dependent on a non-differentiable flow of time. The oper-
ational dynamics of the device must inherit this fundamental property of the dynamically
transforming matter–field. Whether the evolutionary mechanisms or algorithmics thus
far envisioned by biology or AI are coordinate with such requirements is left seriously in
doubt.
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Whether we are contemplating radios, robots, or robins, we are viewing very
complex devices. For radios or robots, we know the device was created by human
minds via a not well understood process called “design,” and given the difficult
birth of the radio, “creative design.” For robins, the evolutionary theory of
Darwin tells us things are different. The universe, acting as a giant machine,
employed a form of procedure or “algorithm” to produce the robin. This procedure
used random conjunctions of atoms to make chemical molecules. With more
random conjunctions, it produced an elementary, living “device,” perhaps a
proto-cell. It then used and continues to use random mutations, in conjunction
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with forces or events in the external environment, to effect “natural selec-
tions” which dynamically transform devices into yet different devices, resulting
in things such as robins, rabbits, and a Rex or two of the Tyrannosaurus type. 

With this giant machine, we have removed all need to design these devices,
and most significantly, any form of Mind or Intelligence designing them. This
view is very much in consonance with Artificial Intelligence, which envisions
machine algorithms that successfully design devices without any role required
for consciousness, or conscious perception. The existence of AI and its mission
is very much a hidden support of evolutionary theory. Indeed, Lloyd (2006) has
proposed that the universe is a vast quantum computer wherein a few simple
programs were constructed via random processes, enabling the bootstrapping
of the whole complex production algorithm and machinery into existence. 

There is a difficulty, however. Artificial Intelligence harbors a deep, unresolved
problem, namely, that of commonsense knowledge. It is precisely this form of knowl-
edge that underlies the construction of devices, be it mousetraps, mice, or
mammoths. Knowledge of course is a function of mind. Mind, in turn, is an integral
participant in a flow of universal time that is indivisible or non-differentiable. It
is this simple fact that undermines AI’s ability to solve the problem of common-
sense knowledge, and as a result, any hidden support it could provide for the
theory of evolution. In turn, this means that the Cosmic Evolutionary Machine
must be a different “device” than that envisioned either by AI or by theorists
of evolution. 

It is not my purpose here to dispute the fact that there is evolution. But I
intend to show that this extremely important subject, affecting profoundly our
conceptions of man and mind, is being treated cavalierly by its expositors, and
is far more complex than is being portrayed. In fact, we shall see that it is intimately
entwined with this question: What is the relation of consciousness to cognition?
Here, we shall see that our model of time is critical. 

The Mousetrap and the Complexity of Devices 

In recent years, consternation arose in the theoretical circles of evolution as
Michael Behe (1996, 2007), an academic biologist, challenged the possibility
of the “algorithmic” approach to design espoused by evolution. Though Behe
dealt heavily in the biochemical realm, he placed the problem initially in the
intuitive context of a mousetrap. The (standard) mousetrap consists of several
parts (Figure 1). As a functioning whole, he argued, the trap is “irreducibly
complex.” For the device to work as designed, all the parts must be present and
organized correctly, else it does not function.

The urge is to break the problem of instantiating this design into simpler
components — evolving the separate, smaller parts. Natural selection buys
nothing here, Behe argued. Natural selection picks some feature or form or
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component to continue because it happens to have been proven useful for survival.
Evolving a single part (component), which by itself has no survival value, is
impossible by definition — impossible, that is, by the definition of the role and
function of natural selection. But even if by chance the parts evolved simulta-
neously, there remains the enormous problem of organization of the parts. How
does this happen randomly? Each part must be oriented precisely spatially, fitted
with the rest, fastened down in place, and even fabricated, etc. There are enormous
degrees of freedom here — ways the parts can rotate, translate, and move around
in space — which drive the odds against randomness to enormous proportions.

The problem can quickly be placed in the biochemical realm. Consider just
one such structure in the cell alone. To manufacture palmitic acid, the cell
relies on an elaborate circular molecular “machine.” At the machine’s center
is a small arm comprised of molecules. The arm swings successively through six
“workstations.” Each time the arm rotates, two molecular subunits of the fatty
acid are added by the action of enzymes at the workstations, and after seven
rotations, the required fourteen units are present and the fatty acid released.
For this rotary assembly to work, all six enzymes must be present in the right
order and the molecular arm properly arranged. Now we ask, how, in what
steps, always having a useful or survival value, does natural selection produce
such a device?

Reviewers of Behe admit the lack of current solutions to this question. To
quote one, “There are no detailed Darwinian accounts of the evolution of any
fundamental biochemical or cellular system, only a variety of wishful specula-
tions” (Shapiro, 1996, p. 63). Nevertheless, evolutionists have reacted strongly,
with attacks focusing heavily on the biological and biochemical level. An interest-
ing case is their attack upon a favorite example used by critics of evolutionary
theory involving the gas-puff firing Bombardier beetle. The beetle (there are
many variants) uses a chemical combination of hydroquinones and hydrogen
peroxide which collect in a reservoir. The reservoir opens into a thick-walled
reaction chamber (in the beetle’s rear) lined with cells that secrete catalases
and peroxidases. The resulting reaction quickly brings the mixture to a boiling

Figure 1: Mousetrap, standard issue. 
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point, vaporizing about a fifth. The pressure closes the valve and expels the
gases through openings at the tip of the abdomen in a powerful jet at a would-be
attacker. If the system were not initially designed with separate chambers for
the chemicals, it is argued that the beetle itself would explode. The “exploding
beetle” concept has been questioned, but more interestingly, Isaak (1997) has
laid out a series of simpler beetle instantiations or steps, with examples of various
steps embodied in other beetles of the class, which at least indicate a progression
towards the Bombardier’s sophisticated system. 

In sum, there are definite biological arguments for the existence of simpler
stages. Note, however, that while one can demonstrate that there are simpler
stages, this does not mean that one has an actual, concrete model of how one
transitions from stage A to stage B, and then to stage C. It was this that formed
the implicit force of Behe’s “irreducible complexity” argument (cf. Behe, 2007).
At this point, evolutionary theory invokes natural selection, which chooses B
over B' or B", and which is effected by external forces of the environment. This
is vague enough, while the actual creation of B, B', or B" from A requires the
mechanism of mutations. 

That mutations can account for change in what is called “microevolution” is
unquestioned. The fish in ponds in the depths of dark caves gradually turn white.
Certain light-colored moths in England during the dusty, sooty era of the industrial
revolution gradually turned to a darkish color. (With the decrease in industrial
pollution, they have also recently “evolved” back again to a light color.) But the
assumption has been that this same mechanism can work for larger, more com-
plex, structural transitions, where we move from dinosaur to bird, fish to frog,
frog to rat, or even from variant 1 to variant 2 to variant 3 of the Bombardier
beetle. This is the point of contention, and here I must discuss things at the
example level of the mousetrap. 

The treatment of the mousetrap example per se by evolution theorists, with
its question of transitions (from device A to device B, and from B to C), is less
than satisfying. In fact, as we shall see, it actually moves in the realm of AI, a
realm where there are great problems precisely in this design dimension. Keep
in mind that while in the biological realm, we tend to talk about these transi-
tions simply as “mutations,” there is much more going on, for just as in the
mousetrap, we are talking about complex spatial fittings and fastenings of parts,
complex form shaping and fabrications of the parts from materials. To effect
this, even considering the gene “switches” of “Evo Devo” (Carroll, 2005),
would require extremely complex “programming” or modifications of the
sequences in the genetic instructions to bring this about — i.e., long sequences
of actions that must occur coherently, that leave random probability behind,
and verge, at least, on artificial design. 
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Evolution Theorists Attack the Mousetrap

An argument, often cited as though it were a definitive critique, was provided
by McDonald (2000) to demonstrate how the mousetrap could have simpler
instantiations. His caveat is that this is not an analogy for evolution per se, but
the argument is taken as a critique of Behe (e.g., Miller, 2003; Young and Edis,
2004). Working backwards, McDonald gradually simplified the trap, producing
four “predecessor” traps of decreasing complexity. Behe argued, however, it is
not that simpler mousetraps do not exist. The question is progression — the
actual mechanism of movement from A to B to C. If McDonald is taken as a
defense of evolution, Behe (2000) easily produces a strong counter argument.
Starting with McDonald’s first and least complex trap (Figure 2, left) in the
“sort of evolving” series, he examined the steps needed for McDonald to arrive
at the second trap (Figure 2, right). The first (or single piece) trap has one arm,
under tension, propped up on the other arm. When jiggled, the arm is released
and comes down, pinning the mouse’s paw. It is a functional trap.

The second trap has a spring and a platform. One of the extended arms
stands under tension at the very edge of the platform. If jiggled, it comes down,
hopefully pinning some appendage of the mouse. To arrive at the second, func-
tional trap, the following appears needed: 

1. Bend the arm that has one bend through 90 degrees so the end is perpen-
dicular to the axis of the spring and points toward the platform.

2. Bend the other arm through 180 degrees so the first segment is pointing
opposite to its original direction.

3. Shorten one arm so its length is less than the distance from the top of the
platform to the floor.

4. Introduce the platform with staples (neither existed in the previous trap).
These have an extremely narrow tolerance in their positioning, for the spring
arm must be on the precise edge of the platform, else the trap won’t function. 

Figure 2: Mousetraps #1 (left) and #2 (right) from McDonald’s (2000) first series. (All McDonald
figures reprinted with permission.) 



74 ROBBINS

All of this must be accomplished before the second trap will function — an
intermediate but non-functional (useless) stage cannot be “selected.” This compli-
cated transition is a sequence of steps that must occur coherently. With each
step required, we decrease the probability of random occurrence exponentially. 

Each of the subsequent transitions in the first series (2–3, 3–4, 4–5, where 5
is the standard trap) proved subject to the same argument. McDonald (2002)
then produced a second, more refined series of traps. He argued that the point
was made that a complicated device can be built up by adding or modifying one
part at a time, each time improving the efficiency of the device. Yet there are
still problematic transformations between many of his steps.1 For example, in
the second series, the transition between a simpler spring trap (Figure 3, trap
five) and one now employing a hold-down bar (Figure 3, trap six) is a visual
statement of the difficulty of the problem. Even if the simpler trap were to
become a biologically based analog — a largish “mouse-catcher beetle” —
sprouting six legs and a digestive system for the mice it catches, the environ-
mental events and/or mutations which take it to the next step (as in trap six)
would be a challenge to define. 

But the most apparently decisive evolutionary argument is that indeed bio-
logical “parts” exist that in themselves are independently functional. In essence,
then, evolution has available to it pools of independently functional components
from which to select, and from which to build various larger functioning
wholes. Kevin Miller (2003) considered this the finding of Melendez–Hevia,

1Because (for example) simpler mousetraps are shown to exist, irreducible complexity is critiqued
as vague. The two traps of Figure 3, however, clarify the issue. Trap five is simpler than trap six.
But each trap is irreducibly complex; each fails to work as designed without all its components.
In some cases, the trap is indeed a slightly simpler version of the same design, as trap six of Figure
3 might be taken as a simpler version of a standard mousetrap which works without one of the
standard trap’s parts. But inevitably the simpler traps morph to different designs which no longer
effect quite the same function (e.g., trapping a paw vs. smashing the poor creature). 

Figure 3: Traps five (left) and six (right) from the second series (McDonald, 2002). Trap six now
has a hold-down bar hooked into the platform and lodged (lightly) under the hammer arm.
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Waddell, and Cascante (1996) in the realm of the Krebs cycle.2 Miller applies
this logic to the mousetrap. Each component can be conceived to be an independ-
ently functional part. For example, the hold-down bar can serve as a “toothpick,”
the platform as “kindling,” three of the components can work together as a “tie
clip” (platform, spring, and hammer), and so on. The implication of this argument
is disturbing, for it indicates that the grasp of the problem is deeply insufficient.
Either the evolutionists, at this point, have simply become very weak AI theorists,
or they know something the AI folks don’t know. The fact is, evolution theorists
have blundered into the greatest of unsolved problems in AI, that of common-
sense knowledge. 

The Problem of the Mousetrap 

Ironically, my own intellectual career had an early phase wherein I contemplated
what it would take for an AI program to design a mousetrap (Robbins, 1976).
The problem was presented as an initial list of components. For example, and
not exhaustively, a 12" cubical box, a sharpened pencil, a razorblade, a length
of string, paper clips, rubber bands, staples, toothpicks, and of course a piece of
(Wisconsin) cheese. From this, the task is to create a mousetrap. (At the time, I
believe, this was used as a creativity test for future engineers.) One AI program
I considered was Freeman and Newell’s (1971). This program had a list of func-
tional requirements and functional provisions for various objects. For example, to
design a KNIFE, it discovered that a BLADE provided cutting, but required
holding. A HANDLE provided holding. By matching the requirements to an
object’s list of provisions, the program “designed” a knife. It is precisely the
implicit approach of Miller (2003), as noted above.

I tried mightily to imagine how such a program would work in the mousetrap
problem. There are many possible designs. I might make a form of crossbow,
where the ends of the rubber band are attached to the outside of the box, the
pencil (as an arrow) drawn back through a hole in the side, a paperclip holds
it via a notch in the pencil, and a trip mechanism is set up with the paperclip,
the string, and cheese. Or I might devise a sort of “beheader,” where the razor-
blade is embedded in the pencil as an axe, the pointed pencil end lodged in a
corner, the whole “axe” propped up by a toothpick with downward tension
from the rubber band, string attached to the toothpick for a trip mechanism, etc.

What, I asked, would the database of objects’ functional provisions and
requirements look like? To make the story short, I will say that I quickly aban-
doned any hope for this scheme. The problem is far larger. One rapidly starts

2Behe, however, notes that this is simply like describing the various chemical transitions of oil,
from its initial raw state, to gasoline, while ignoring the origin and explanation of the various
and complex machinery employed at each stage of the refinery process.
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to entertain the storage of “features.” Noticing the “sharpness” of the pencil, it
seemed, was integral to seeing it as supportive of the killing-function within
the crossbow. It is doubtful that “killing” or “piercing” would have been listed
in the database as “functional provisions” of a pencil. The corner of the box
provided “holding” for the pencil-axe, and while it is doubtful this would have
been listed as a functional provision of box corners, it seems a type of feature.
Note, meanwhile, that in the axe case, the pencil “provides” something quite
different from the pencil as arrow, while a certain feature of strength and rigidity
has emerged in this context. 

So do we envision a vector of pre-defined “features” for each object in our
database? At a later date, in essence, this would be the approach of Gentner
(1983) and many subsequent connectionist instantiations (Doumas, Hummel,
and Sandhofer, 2008; Holyoak and Thagard, 1997; Hummel and Holyoak, 2005).
But features are very ephemeral — they are functions of transformations. A
fishing rod can be flexible under one transformation, sufficiently rigid under
another. A floppy sock, under the appropriate transformation, gains sufficient
rigidity to become a handy fly-swatter. The pencil’s rigidity under one transfor-
mation may change to just enough flexibility to support the launching of spit
wads. A box may preserve its edges and corners invariant under various rota-
tions, but lose them completely under a smashing transformation applied by
the foot. And precisely the latter may be done to turn the small box in the
potential components list above into a temporary dustpan. Thus we would
need to store all possible transformations upon any object. 

Transformations

McDonald (2000), as we saw, performed two “bending” transformations on the
wire of mousetrap #1 to obtain mousetrap #2. This form of dynamic transforma-
tion in thought heavily impressed the Gestalt psychologist, Max Wertheimer
(1945). He had observed children in a classroom being taught, via drawings of
a parallelogram on the blackboard, the traditional, algorithmic method of
dropping perpendiculars to find the area. Yet, when Wertheimer himself went
to the board and drew a rotated version of the parallelogram figure, he was
shocked to see that the children failed to extend the method. But outside the
algorithmic-oriented classroom, Wertheimer observed a five year-old who looked
at a cardboard cutout of a parallelogram, then asked for a scissors so she could
cut the (triangular) end off and move it to the other side to make a rectangle. This
was bettered by the dynamic transformation exhibited by another five year-old
child who folded the cardboard parallelogram into a cylinder, then asked for a
scissors to cut it in half, announcing it would now make a rectangle. 

We meet this dynamic “folding” transformation in Penrose (1994). While his
critique of AI was heavily attacked by the AI community, few noticed that in
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his characterization of “non-computational” thought, Penrose had gravitated
towards transformations and the invariants preserved under these transforma-
tions. In his proof that successive sums of hexagonal numbers are always a
cubical number (hence a computation that does not stop), he initially folds a
hexagonal structure into a three-sided cube. He then has us imagine building
up any cube by successively stacking (another transformation) these three-
faced arrangements, giving each time an ever larger cube (Figure 4). This is a
dynamic transformation over time, in fact multiple transformations with
invariants across each. We can expand the hexagonal structures successively,
from 1, to 7, to 19, etc., each time preserving the visual hexagonal invariant.
Then, each is folded successively, each time preserving the three-faced structural
invariant. Then imagine them successively stacking, one upon the other, each
operation preserving the cubical invariance. Over this event, the features (or
transformational invariance) of the transformation are defined. 

These cases are images of events. It is the ability to represent events in the
medium of an image that has been so problematic to the information systems
approach in cognitive science. Pylyshyn (1973) initially denied any need for
mental images, arguing that the information in data structures is entirely sufficient
to subsume the function of images. Later, in his “null hypothesis,” while not
denying their existence, he challenged the field to explain why images are
needed. His key question was this: “What does the real work in solving the
problem by [mental] simulation — a special property of images . . . or tacit
knowledge?” (Pylyshyn, 2002, p. 162). Thus, in contemplating the folding exper-
iments of Shepard and Feng (1972), where subjects were required to mentally
fold paper into objects of certain forms, he noted that the subjects had, by
necessity, to proceed sequentially through a series of folds to attain the result.

Figure 4: Top: A hexagonal number (19) form folded into a three-faced (side/wall/ceiling) structure.
Bottom: Successive cubes built from side, wall, and ceiling. Each side, wall, and ceiling structure
make a hexagonal number. 
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Why? “Because,” he argued, “we know what happens when we make a fold” (2002,
p. 164, original emphasis). It has to do, he stated, with “how one’s knowledge of
the effects of folding is organized” (p. 164). 

Sloman (1971), in a seminal paper, had already given Pylyshyn his answer.
He contrasted the Fregean or syntactic mode of representation with what he
termed the analogic mode. In the analogic mode, there is the natural represen-
tation of constraints. The paper does not disintegrate while it is being folded.
The edges stay stable and move to overlap one another. One surface generally
stays stationary. All these constraints are in fact invariance laws defined over
these event-transformations. On the other hand, in syntactic systems, failures
of reference are commonplace. The syntactically correct, “The paper screeched
and burbled as it was folded,” makes little semantic sense — it instantly violates
the invariance across folding events. The frame problem (McCarthy and Hayes,
1969) is in essence another statement of this problem of representational
power (Robbins, 2002). To Sloman, the greatest challenge faced by AI was
achieving this (analogic) form of representation. 

Again, we can recast Sloman’s challenge: What type of “device” is required
to support this form of representational power? But this is only to ask: What
type of device can support perception? No visual imagery ever occurred with-
out visual perception. The congenitally blind bear witness to this. The image
is a question of (1) perception and (2) the memory of this perception. In turn,
the image is the knowledge. It is no less the knowledge than the actual perceiv-
ing of an event of folding is simultaneously — knowledge. What is a “fold”
other than an invariant defined over transformations in concrete experience?
We have seen folds made in sheets, folds made in paper, folds made in arms/elbows,
folds made in sails, folds made by Penrose (1994) in three-faced hexagonal
structures to make partial cubes, and even folds made with poker hands. And
we have made the folds with bodily action. Something is always being folded.
There is no such thing as an abstract “folding,” no such thing other than as a
dynamic transformation preserving an invariant and defined over our concrete,
perceptual experience. 

The Invariance Structure of Events

Transformations and invariance — why the emphasis? Firstly, discovering
invariance laws is scientific explanation. This has been heavily argued
(Hanson, 1958; Kugler and Turvey, 1987; Wertheimer, 1945; Wigner, 1970;
Woit, 2006; Woodward, 2000, 2001, 2003). In this, science only models itself
after the brain in perception. E = mc2 is an invariance law. F = –kX is an
invariance law. In relativistic physics, it is only the invariants (d = vt, d' = vt')
that are the realities of the relativistic universe (Lieber and Lieber, 1945), for
it is these that hold across space–time partitions. This essential endeavor of
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science is often beclouded in the psychological sciences, but it is invariance
laws that characterize the ever transforming world of perception where events
occur in the concrete ecological world. As I have stressed many times
(Robbins, 2002, 2004a, 2006a, 2006b, 2007, 2008, 2009), such events have an
invariance structure. An invariance structure is defined as such: the transformations
and invariants specifying an event and rendering it a virtual action. 

A simple event that is illustrative is stirring coffee. The swirling coffee surface
is a flow field (Figure 5), in this case in radial form. The constant size of the
cup, as one’s head moves forward or backward, is specified, over time, by a con-
stant ratio of height to the occluded texture units of the table surface gradient.
Over this flow field and its velocity vectors a value, τ, is defined by taking the
ratio of the surface (or angular projection) of the field at the retina, r(t), to its
velocity of expansion at the retina, v(t), and its time derivative. This invariant,
τ (or tau), specifies time to impending contact with an object or surface, and has
a critical role in controlling action (Kim, Turvey, and Carello, 1993). A bird,
for example, coming in for a landing, must use this τ value to slow down appro-
priately to land softly. As the coffee cup is moved over the table towards us,
this value specifies time to contact and provides information for modulating
the hand to grasp the cup (Savelsbergh, Whiting, and Bootsma, 1991). As the
cup is cubical, its edges and vertices are sharp discontinuities in the velocity
flows of its sides as the eyes saccade, where these flows specify, over time, the
form of the cup (Robbins, 2004a, 2007). The periodic motion of the spoon is a
haptic flow field that carries what in physics is termed an adiabatic invariance
— a constant ratio of energy of oscillation to frequency of oscillation (Kugler
and Turvey, 1987). The action of wielding the spoon is defined by an inertial
tensor, the diagonal elements of which represent the forces involved, or more

Figure 5: Optical flow field. A gradient of velocity vectors is created as an observer moves
towards the mountains. The flow field “expands” as the observer moves. At right, the flows as a
cube rotates towards the observer.
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precisely, the object’s resistance to angular acceleration (Turvey and Carello,
1995). This entire structure and far more must be supported, globally, over
time, by the resonant feedback among visual, motor, auditory, even prefrontal
areas. In other words, it is this entire informational structure that must be supported,
in ongoing fashion, over time, by the neural dynamics supporting the perception of the
coffee stirring event. It is in these invariance structures that we find the founda-
tion of knowledge and semantics (Robbins, 2002, 2008). Knowledge and seman-
tics are both served by a fundamental memory operation termed redintegration. 

Redintegration, Commonsense Knowledge, and the Frame Problem

As I am walking along a road, I spot a rustle in the grass in the roadside
embankment. Instantly an experience returns in which several blacksnakes rushed
by me as I was walking up a hill years ago. This is the elementary operation of
redintegration. It is the most ecological of memory operations. Wolff (1732/2010),
a disciple of Leibniz, first coined this law in 1732 in his Psychologia Empirica,
stating that “when a present perception forms a part of a past perception, the whole
past perception tends to reinstate itself.” Klein (1970) notes that these remem-
bered experiences are “structured or organized events or clusters of patterned,
integrated impressions,” and that Wolff had in effect noted that subsequent to
the establishment of such patterns, the pattern might be recalled by reinstatement
of a constituent part of the original pattern. It is the mathematical description of
these “event patterns” in terms of invariance laws that is the core of Gibson’s theory.

The redintegration principle can be stated simply: 

An event E' will reconstruct a previous event E when E' is defined by the
same invariance structure or by a sufficient subset of the same invariance
structure.

I will not discuss in this paper how a time-extended experience is “stored.”
It is sufficient here to assume the principle of exemplar theory (Crowder, 1993;
Goldinger, 1998), which holds that every experienced event, in every detail, is
stored. Given the discussion above, this means the event’s entire time-extended
dynamic structure with defining invariants. While exemplar theory simply uses
the vague notion of events leaving “traces,” we can simply envision, as did
Gelernter (1994), a “stack” of experienced, coffee stirring events in memory, in
fact, every coffee stirring event ever experienced. When a present event, E', is
perceived, with the brain therefore supporting the time-extended invariance
structure of E', we can say with exemplar theory, that all the previous event
traces are activated, or, more accurately, that this entire stack of experiences
with similar dynamic structure, is resonant with E'. 
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We can imagine, then, a robot stirring coffee. As he stirs, the coffee liquid
medium begins to behave as a thick cement, barely allowing the spoon to be in
motion. This is just one of a vast list of possible anomalies. For others: as the
robot stirs, the cup floats off the table, or the motion of the liquid is in a counter-
circular direction to the spoon, or the cup bulges in and out, or small geysers
erupt from the liquid surface, or the sound is a “snap, crackle, pop” like Rice
Krispies, or the spoon melts into rubber . . . . While it is not uncommon to see
philosophers discussing the problem in terms of the robot updating his “beliefs”
about coffee stirring, this is misleading. The prior, far more fundamental ques-
tion is this: How does the robot detect that this (or any of the above) is an
unexpected feature of the event? In the context of the frame problem, as the
event is ongoing, the robot must check, continually, his vast list of frame axioms
defining not only the features of this event, but multitudinous dimensions of
his external world. Discovering a method to reduce the list of axioms is exactly
the frame problem. 

In redintegration, we obtain a view of a far more powerful method. The anomalous
stirring event, with cup bulging in and out, retains sufficient invariance structure
to send a redintegrative cue throughout the “stack” of stirring experiences,
retrieving similar events of coffee stirring. Yet there will be an “interference,” a
dissonance with the whole. Since we are dealing with a very concrete “device,”
it is a felt dissonance — the discrepancy is instantly detected — and there is no
need to check a list of frame axioms to see if this is an unexpected feature of
the event. 

As the body/brain is such a redintegrative device, this is, in essence, its method
of solving the frame problem. Within this method, there lies implicitly its
approach to the correlated problem of commonsense knowledge, and therefore
the design of devices. I will develop this in what follows and as we examine the
approach of AI and cognitive science to this problem. 

Connectionism versus Ecological Invariance 

Connectionist models propose to be presenting the method by which the brain
represents semantic knowledge or semantic cognition. Rogers and McClelland
(2004, 2008) present a scheme using a three-layer network. The input units
correspond to an item in the environment, for example: ROBIN, or SALMON,
or FLOWER. The units in the relationship layer correspond to contextual con-
straints on the kind of information to be retrieved, for example: IS, CAN,
HAS. The input pair, ROBIN CAN, they argue, corresponds to a situation in
which the network is shown a picture of a robin and asked what it can do. The
network is trained to turn on the correct attribute units of the output layer, in
this case: GROW, MOVE, FLY, SING (as opposed to SWIM, DIVE, FLOP).
As the connection weights are initially random, the output units of the network
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must be adjusted gradually, via a backpropagation algorithm based upon the amount
of error relative to the desired output state. This adjustment often requires many
hundreds of epochs of training. 

Rogers and McClelland hold that this network is perfectly at home in the
ecological world. The input units, they hold, can be construed as receiving per-
ceptual input, for example the observation of a robin sitting on a branch, and
the output units are predicting possible events or outcomes, say, the robin flying
away. Obviously these statements would hold for, “The rustle in the grass” that
predicts (retrieves) the slithering snakes. As is the norm in these models, no
effort is made to determine if this network could actually support the complex
patterns that we have seen characterize time-extended events, or also, prob-
lematically, whether it makes any realistic, ecological or evolutionary sense to
demand of the model of the brain that supports this form of redintegration that
it require hundreds of epochs of training to establish this memory relationship. 

We can place another ecological learning situation within the Rogers and
McClelland framework. Given the object, SPOON, in the context of CAN, the
network would be trained to respond with the set of things a spoon can do, for
example, STIR (as in coffee), SCOOP (as in cereal), CUT (as in grapefruit),
BALANCE (as on the edge of the coffee cup). In essence, for an event such as
stirring coffee, we have bifurcated these various events into components —
SPOON and STIR, or SPOON and CUT, or SPOON and SCOOP — and
attempted to train the network to associate these components. 

What sense does this make? In reality, we are perceiving the spoon as an integral
part of a stirring event, with all the event’s ongoing invariance structure, to
include the forces supplied by the spoon relative to the liquid medium, the
resistance of the medium, its particular motion, the periodic motion of the
spoon with its inertial tensor, adiabatic invariance, etc. It is a structure that is
necessarily being supported, over time, by the neurodynamics of the brain, else
there is no perception of the ongoing event with its structure (Robbins, 2008).
Where is the “error?” That is, where is the error that must be weight-adjusted
to achieve the proper “linkage”? 

The fact is, this partitioning of events into arbitrary components harkens
back to Ebbinghaus, who made the move of removing all semantics from the
study of memory, inventing instead, the nonsense syllable. When studying how
we learn nonsense syllable pairs such QEZ–WUJ, memory research is being
faithful to this vision — studying the process of the formation of the elementary
item-bond. The unceasing desire to explain this “bond” is the elementary ill of
associationism. Subjects in these experiments quickly learned that if they could
form an event, say a pudgy (pudge for WUJ) Turkish person wearing a fez (fez
for QEZ), they could learn the pairs more easily. Paivio’s (1971) introduction
of imagery into these experiments was the first near-ecological crack in the
approach. For an arbitrary pair such as DOG–GATE, the subjects now imag-
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ined an event such as a dog opening a gate, and performance greatly improved.
The connectionist net is learning syntax-rules. Syntax can be defined as rules
for the concatenation and juxtaposition of objects (Ingerman, 1966). QEZ–WUJ is
a rule for the juxtaposition of objects, as is DOG–GATE when DOG and GATE
are treated at the merely mechanical level as a pair of “marks” or objects, as is
SPOON–CAN–STIR, etc. The redintegrative process described above relies,
rather, on the laws (invariance structure) of events. 

But suppose we have error-trained the connectionist net such that for SPOON
CAN, it responds with the set: STIR, SCOOP, CUT, BALANCE. This represents
the network’s semantic “understanding” of the capabilities of a spoon. But we can
easily understand the sentence: The SPOON CAN CATAPULT (a pea). We
understand this because we grasp that the spoon will support the forces/invariance
structure of catapulting. It is in the invariance structure that the semantics of
this sentence rests. 

The difficulty for the connectionist net rests precisely in the realm of the
powerful critique made by French (1990) in the context of the Turing test. French
proposed various tests for any computer attempting to masquerade as a human.
Obtaining a passing grade relied totally on having the requisite concrete expe-
rience. One test was a rating game, with questions such as:

Rate purses as weapons.
Rate jackets as blankets.
Rate socks as flyswatters.

And of course we could have:

Rate spoons as catapults.

The computer’s ratings would be compared to human rating norms. French
argued that there is no way a computer can pass such a test without the requisite
concrete experience. The problem equally holds for evaluations of statements
such as:

A credit card is like a key.
A credit card is like a fan.

The list is endless. Says French (1999), “. . . no a priori property list for ‘credit
card,’ short of all of our life experience could accommodate all possible utterances
of the form, ‘A credit card is like X’ ” (p. 159). Without the experience, one
incurs the necessity of either pre-programming or training-up the association
weights of all possible pairs of objects. Yet, this is exactly the implicit road
down which the network of Rogers and McClelland is headed. To even bring
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SPOON into some form of association with CATAPULT would require addi-
tional, explicit epochs of weight adjustments involving CATAPULT. But a catapult
is just one of a vast array of objects we could “associate” with a spoon. We could,
for example:

Rate a knife as a spoon.

A knife can serve as very good stirrer of coffee, showing the structural invariance
required to move the medium under this motion — if this is the transformational
context. It is not much good for eating soup. But this makes the programming
of association weights even more impossible, for now they all depend upon a
transformational context. As French essentially noted, the neural net has no
concrete experience with stirring, spoons, knives, or catapults. But what is
experience? At minimum, it is comprised of multimodal events structured by
time-extended transformations and the invariants preserved over these.

The rating events above are all forms of analogy. In each, we have, in effect,
the projection of an invariance structure upon a possible component. A knife is
placed in a stirring event, a spoon in a catapulting event, a sock in a fly swatting
event, or a box and pencil in a beheading event, and each “tested” on the
emergence of the structural invariance (“features”) requisite for preserving the
invariance structure of the event. Here, the analogy defines the features. 

AI’s Approach to Analogy

The symbolic programming method in AI has proffered several models for
analogy making, the most famous of these being Gentner’s (1983) Structure
Mapping Engine. To the Structure Mapping Engine, as in all AI, the features
define the analogy. Thus the Structure Mapping Engine treats analogy as a map-
ping of structural relations relative to pre-defined features. The solar system,
for example, and the Rutherford atom both have specific features and their
relationships described in predicate calculus form, e.g., Attracts (sun, planet),
Attracts (nucleus, electron), Mass (sun), Charge (nucleus), etc. Chalmers, French,
and Hofstadter (1992) level a heavy critique upon this approach, noting the
helplessness of the Structure Mapping Engine without this precise setup of fea-
tures and relations beforehand, and with this setup given, the purely syntactical,
nearly “can’t miss” algorithmic or “proof ” procedure that follows. The resultant
discovery of analogy is, to quote these critics, a “hollow victory.” 

The connectionist models of analogy are equally wedded to this approach.
For Discovery of Relations by Analogy or DORA (Doumas, Hummel, and
Sandhofer, 2008), the engine for forming analogical relations is a comparator
that operates on propositions which have a dimensional value. If DORA “thinks”
about a DOG of size-6 and a CAT of size-4, the comparator, detecting the
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dimensional value, links a “more” relation to the size-6 (or “more+size-6”) related
to the DOG and a “less+size-4” for the CAT. If this pattern reminds DORA of
a previous comparison of the same type between a BEAR (more+size-9) and a
FOX (less+size-5), a further operation now compares the CAT and DOG units
to the similar setup for the BEAR and FOX, eventually spawning a new unit,
BIGGER, bound to BEAR and FOX or Bigger (BEAR, FOX). The authors of
DORA argue that this same process will be fully applicable to ecological
events, i.e., “relations” such as “chasing,” and by extension, “stirring.”

Ignoring for the moment that DORA’s comparator is not even close to some-
thing that can handle actual, ecological events, let us suppose we have formed
single place predicates (SPs) such as stirred (coffee), stirrer (spoon), and stirred
(paint), stirrer (paint-stick). According to the model, a pair of single place pred-
icates enters working memory, in this case stirred (coffee) and stirrer (spoon).
These are “mapped” as a unit onto other SPs, in this case stirred (paint) and
stirrer (paint-stick). This mapping serves as a signal to link the SPs into a larger
predicate structure, thus stir (spoon, coffee) and/or stir (paint-stick, paint). 

This is simply a syntactic mapping. It is based on the fact that the model
would attach “stirrer” as a feature to spoon, and “stirred” as a feature to coffee.
Given the precise setup of these predicates, the mapping can occur via an algo-
rithm. Without this precise setup, the process is helpless. The network has no
ability to create or recognize the validity of multi-place predicates such as stir
(knife, coffee) or catapult (spoon, pea) without this setup. It is another example
of the validity of French’s critique. There is nothing in the network, unless it
has been specifically trained and the “features” specifically set up, that would
support these relations. Connectionism has simply met symbolic AI at the
same problem — commonsense knowledge. 

At DORA’s heart is a model of redintegration. When DORA envisions stirred
(coffee) and stirrer (spoon) entering working memory while other propositions
in long term memory that share the semantic units — stirred (paint) and stirrer
(paint-stick) — are brought in and made available for mapping, this is the redin-
tegration of events. DORA’s is based on a very problematic reactivation of the
“same” semantic units. Underlying the stirring of paint-sticks, spoons, or spatulas
are the complex invariance laws we have seen described — the “wielding” char-
acterized by inertial tensors, the adiabatic invariance underlying the periodic
motion, the radial flow field of the liquid’s surface. There are no simple dimen-
sional values analogous to “size-6,” for example a “wielding-6” or “periodicity-3,”
that can be assigned to “semantic units” such that these that can now be “com-
pared” via the simple algorithm of DORA. DORA has no ability to deliver on
what “same” can possibly mean in these kinds of ecological events, for DORA,
as in all connectionist approaches, utterly begs the description of change. 

The invariance structure of the event is the description of change. It is this
underlying structure that would need to be invoked as a constraint to prevent
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DORA from “thinking about” stirrer (spoon) and chased (Mary), and being
reminded of a previous comparison, stirrer (spatula) and chased (Joe), thus deriv-
ing stirring (spatula, Joe). The proposition, stirring (spatula, Joe), is the essence
of a syntactic “failure of reference.” As a sentence, it takes its place with other
sentences that are syntactically correct but seem to have no semantic justification:

1. The leaf attacked the building.
2. The shadows are waterproof. 
3. The spatula stirred Joe. 
4. The building smoked the leaf.

Katz and Fodor (1963), early in the game, tried to solve this problem by “semantic
markers” assigned to each lexical item in the deep structure. These were simply
syntactic rules trying to represent physical constraints — rules attempting to
do the work of the invariance structure. The “leaf ” in (1) would thus receive
a marker denoting it as inanimate among other things, while “attack” would
receive a marker requiring its use with an animate object. Having incompatible
semantic markers, such a system brands the sentence as meaningless. “Stirring”
would have been tagged with a marker requiring its object to be, say, liquid.
Joe, having no such marker, would have thus been seen as illegal in (3) and the
string also branded as meaningless. Unfortunately such sentences can appear
very meaningful. An analogy performs a transformation; it allows the requisite
“features” to emerge. Sentence (2), which would also have incompatible markers,
is perfectly interpreted as meaning that we can throw as much water on shadows
as we like and they will be unharmed, i.e., the perceived event of water pouring
upon a shadow shares an invariant with other events of water pouring over
waterproof materials, namely the undamaged state of the material substance of
these objects under this transformation. As for (3), we can easily make sense of
this sentence, “The bad architecture of the system is like a spatula, stirring Joe,
the programmer, into an anxious mess.” Such transformations would quickly
lead to “rules for relaxing the rules,” but the rule system quickly ends in anarchy,
being so flexible that it is useless as an explanatory device.

The apparent meaninglessness could only be avoided by a constraint, but
this constraint is equivalent to having — stored somewhere and acting — the
complete invariance structure of the event (of stirring, of pouring, etc.)! The
invariance structure is what prevents Joe from “being stirred” given the normal
context of a stirring event — Joe is not easily inserted into this dynamic structure.
It is this structure that causes the feeling of anomaly — the failure to resonate
with the laws of experience — in the sentence:

As Joe stirred, the coffee snapped, crackled, and popped.
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This structure cannot be syntactically represented. You are begging an entirely
different form of knowledge to supply the vast number of possible constraints
involved even in this simple event. It is the event invariance structures that
are prior in explaining these linguistic cases.

The features on which analogy is “based” cannot be preset, pre-defined. As
noted, it is the analogy that defines the features. Analogy is a transformation.
This is to say that it is a process that occurs over a concrete flow of time. It is
supported only over concrete experience or the remembrance thereof, i.e., it is
carried only over transforming imagery — the figural mode. Artificial intelligence,
based in a classical notion of an abstract, spatialized time and without a theory
of perception, can support neither of these requirements for analogy, and it is
analogical thought that is supporting the design of the mousetrap.

Beyond the Fundamental Metaphysic of AI

AI is founded in what can be termed the classical metaphysic. It is the same
metaphysic that lurks beneath the hard problem/the origin of qualia. I have laid
out arguments several times (Robbins, 2000, 2001, 2002, 2004a, 2004b, 2006a,
2006b, 2007, 2008, 2010a, 2012) on the consequences of this framework and
on the alternative model that exists in Bergson (1896/1912) when combined
with Gibson (1966). The essence of this classic metaphysic is an abstract space
and time. The space is conceived as continuum of points or positions. Time is
simply another dimension of this space. Thus the motion of an object (itself a
set of points) in this continuum is treated as a movement from (static) point to
(static) point along a line or trajectory. This is an infinite regress, for to account
for the motion, we must reintroduce yet another line/trajectory of points
between any two adjacent static points on the original line, ad infinitum. This
spatial treatment of motion is the origin of Zeno’s paradoxes — the arrow, always
occupying a static point in the continuum, “that never moves,” or Achilles,
forever halving/dividing the distance, who never catches the hare. Indeed, for
Bergson, this space is simply “a principle of infinite divisibility.” 

Bergson argued that to escape this, we must treat motion as indivisible, or as
Nottale (1996) now states it, as non-differentiable. Motion is better conceived as
a melody where each note (“instant”) interpenetrates the next, and each is the
reflection of the entire preceding series — an organic continuity. As the object
can move across the continuum, or the continuum (or the coordinate system)
can be moved beneath the object, all motion becomes relative; all real motion
is now lost. But stars die, trees grow, couch potatoes get fat — there must be
real motion. Rather than “objects” in motion, we now view the whole of the
matter–field as transforming, where the motions of “objects” are now changes
or transferences of state. 
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As opposed to the (quality-less) homogeneity inherent in the abstract contin-
uum of mathematical points, the matter–field is now intrinsically qualitative,
and the nature of its non-differentiable motion gives the entire universal field,
in its time-evolution, a fundamental property of memory. Each “past” instant does
not recede into non-existence as the “present” instant arrives. This “primary”
memory inherent in the indivisible motion of the field makes possible the brain’s
specification of a past history of the motion of this qualitative field — a rotating
cube, a buzzing fly, a folding hexagon, or a bending mousetrap arm. 

In the context of this “specification,” I have given arguments for ceasing to
view the world as being encoded or represented within the brain, and seeing
the brain, rather, as itself the decoder. The decoding is effected by the brain in
the role of a concrete reconstructive wave passing through the external, holo-
graphic matter–field, with the brain’s state being specific to a past motion of the
field. Via the brain’s energy state (or its underlying chemical velocities), it is a
specification at a particular scale of time or in essence a space–time partition
— a “buzzing” fly as opposed to a fly flapping his wings like a heron. The “image”
(of the fly) is not mysteriously generated by the brain; it is now simply a diminution
of the whole, a specification of a subset of the vast information in the dynamically
changing holographic field. The brain is not simply a “hologram.” The reentrant
neural processes, the oscillations, the resonant feedback that have hitherto
been taken solely to be abstract computations — all in effect contribute to this
very concrete wave. The brain’s function is as concrete as that of an AC motor.
The motor creates an electric field of force; the brain creates a concrete, con-
tinuously modulated reconstructive wave “passing through” the matter–field.

The modulation pattern is driven by the invariance structure of the external
events in the ecological world. It is the invariance laws defining events that
drive what the brain, as a reconstructive wave, specifies as the external image.
As in relativity, we require invariance laws, for it is such laws that hold across
possible scales of time or space–time partitions. The specification is always an
optimal specification based on the probabilistic information — with its inherent
uncertainty due to the continuous flux of time (Lynds, 2003) — available to the
brain. Even illusions are optimal specifications of a past form of motion of the
matter–field. 

Five Requirements for an Embedded Intelligence

In this context, we can derive five requirements for a device that supports
perception, and therefore cognition, and thus, the ability to design:

1. The total dynamics of the system must be proportionally related to the events
of the matter–field such that a scale of time is defined upon this field.
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2. The dynamics of the system must be structurally related to the events of the
matter–field, i.e., reflective of the invariance laws defined over the time-
extended events of the field.

3. The operative dynamics of the system must be an integral part of the indivis-
ible, non-differentiable motion of the matter–field in which it is embedded. 

4. The information resonant over the dynamical structure (or state) must inte-
grally include relation to or feedback from systems for the preparation of
action (for from the vast information in the holographic field, the principle
of selection is via relation to possible action by the body).

5. The global dynamics must support a reconstructive wave. 

To support perception, then, the device (and its “processing”) must literally
be embedded in the non-differentiable time-flow of the matter–field. A syntax-
directed processor does not meet this requirement. Though it is felt by some
(Dietrich and Markman, 2000; Prinz and Barsalou, 2000) that the operations of
a computer riding atop its continuous dynamics can support semantics (and by
implication experience and perception), this is not the case, and it is why, in
(3), the term “operative dynamics” is used. In the computer model, the effective,
operative “dynamics,” if you can call it that, is in the syntactic manipulation of
symbols. The concatenation and juxtaposition of objects in the classical abstract
space and discrete-instant “time” — operations, further, for which the scale of
time is utterly irrelevant — is not sufficient to support perception or the con-
tinuous, time-extended transformations characteristic of analogical thought. 

And in general, it is not just the organization of components, or the material
from which they are made. It is the concrete dynamics they support. As Haselager
(2005) notes in the context of supporting an autopoietic system, “You cannot
make a boat out of sand.” Neither does one create the concrete, electric wave
of an AC generator with the “proper organization” of toothpicks, rubber bands,
or abacus beads. Whether biological or artificial, the dynamics required for per-
ception must support a very concrete wave, establishing a ratio of proportion,
i.e., a scale of time, upon the matter–field. It is this fundamental architecture that
is required to support the time-extended images of perception, and therefore the
time-extended, transforming images of memory employed in analogical thought. 

The Broadly Computational Mousetrap 

We return then to the ”device” underlying design. In the mousetrap task, we
are designing from existing materials. I do not say from “existing components”
because none of the objects is yet true a component, though each has an inde-
pendent function (e.g., a pencil, a rubber band). The invariance structure of
an event — the drawing back and firing of a crossbow, the striking down of the
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axe — is being projected over the possible “components.” In the process, their
requisite features emerge. 

This is a powerful transformation over a non-differentiable time. I have striven
here and elsewhere (Robbins, 2002, 2006a, 2006b, 2012) to lay out the basis for
a device with sufficient representational power to support it and the implica-
tions for cognition it contains, to include the origin of the compositionality and
systematicity required by Fodor and Pylyshyn (1988), the origin of the symbolic,
and the nature of explicit memory and thought (Robbins, 2009, 2012). As Penrose
argued, it is not computational in the abstract sense given by Turing. Turing’s
definition is predicated upon the abstract space of the classic metaphysic; it
captured the mechanical computations of the bank clerks of Turing’s 1940s era,
or the mechanical knowledge and calculations of the parallelogram-challenged
children in Wertheimer’s classroom (Robbins, 2002). It did not capture the
computation of the five-year old who dynamically transformed the cardboard
parallelogram into a cylinder. The manipulation of discrete symbols in an abstract
space and time cannot support this, nor will a dynamical device that cannot
support perception. Rather, the dynamical brain or robotic system must generate
a very concrete waveform in concrete, non-differentiable time, a wave which
supports a broader form of computation, broader than Turing’s narrow defini-
tion, but consonant with a broader definition he left fully open (cf. Copeland,
2000; Robbins, 2002). 

Evolutionary AI

I am led to the conclusion that a “device” of this power, inheriting attributes
of the non-differentiable time-flow of the matter–field in which it is embedded,
is required to support the design transitions posed by McDonald’s mousetraps.
AI, in its current form, is far from the basic requirements for an intelligent device
described above. Evolution theory cannot implicitly rely on AI-like algorithms
for producing forms and creatures, whether mousetraps, mice, or beetles; it cannot
rely on Lloyd’s (2006) giant, cosmic quantum computer — a computer, no matter
how quantum, that is still in the Turing class of computing machines. 

Now, of course, evolutionary theory says that it does not rely on AI. It puts
its weight on natural selection and mutations. To be clear, it must put all its weight
on natural selection together with mutations (or “variation”). I am simply removing
any temptation to go beyond this. Unfortunately, evolution’s expositors have
already succumbed to the temptation. Not even counting Lloyd’s explicit
appeal to programs underlying evolution, here is an example: bacteria have a
“flagellum” — a thread-like propeller that drives them though the water. This
little device has a rotating axle, turning inside a bearing, driven by a molecular
motor. Behe thought it another irreducibly complex device. Dawkins (2006),
while ridiculing Behe to the point of impugning his motives for publishing,
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approvingly references Kevin Miller — the same Kevin Miller who saw no problem
building mousetraps from arbitrary components. Miller identified a mechanism
comprising the type three secretory system (TTTS) used by parasitic bacteria
for pumping toxic substances through cell walls. Since TTTS is tugging mole-
cules through itself, it is a rudimentary version of the flagellar motor which tugs
the molecules of the axle round and round. Thus, states Dawkins, evolution
must have simply “commandeered” this component for the bacterial flagellum. 

And so the game is revealed. Just what does “commandeer” mean? Perhaps
evolution’s “blind watchmaker,” whom Dawkins sees working by “trial and
error,” is peeking under his blindfold. Did evolution devise the programs for the
selection of the components, the fittings, and the modifications necessary?
Then, as we have just seen, evolution must be employing a far more powerful
“device” than a Turing class computer. Michael Shermer (2006) quotes Darwin’s
concept of “exaptation”:

On the same principle, if a man were to make a machine for some special purpose, but
were to use old wheels, springs, and pulleys, only slightly altered, the whole machine,
with all its parts, might be said to be specially contrived for that purpose. Thus through-
out nature almost every part of each living being has probably served, in a slightly mod-
ified condition, for diverse purposes, and has acted in the living machinery of many
ancient and distinct specific forms. (Darwin, quoted by Shermer, p. 68) 

Though Darwin is clearly going to be no better off than Miller in coaching AI
on the design of mousetraps, in lieu of “commandeer,” Shermer confidently
employs the term “co-opt,” as in evolution “co-opts” features to use for another
purpose. For “commandeer,” Scott (2004) uses “borrowing and swapping.” For
“commandeer,” Dennett (1996) substitutes the term “generate and test,” holding,
with no explication, that evolution simply “generates” new devices such as fla-
gellar motors (or mousetrap #5) to test them out. Finally, Kevin Miller himself
simply uses “mix and matching” saying, “. . . it’s to be expected that the oppor-
tunism of evolutionary processes would mix and match proteins to produce new
and novel functions” (2004, p. 88). If Dennett, Shermer, or the evolutionary
biologists know secretly how to program these things, if they have solved the
problem of commonsense knowledge, they should be teaching the folks in AI. 

Programming in Evo Devo

Perhaps it may be felt that the recent discoveries of “Evo Devo” (Carroll, 2005)
obviate these arguments. It is now understood that all complex animals — people,
flies, trilobites, dinosaurs, and butterflies — share a common “tool kit” of master
genes that govern the formation and patterning of their bodies and body parts.
With this tool kit, fish fins can be modified into the legs of terrestrial vertebrates,
or a simple tube-like leg can be modified into a wing. The development of these
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forms depends upon the turning on and off of genes at different times and places
in the course of development, especially those genes that affect the number,
shape, and size of a structure. Further, about 3% of our DNA or roughly 100 million
bits is regulatory in nature. This DNA is organized into “switches” that integrate
information about position in the embryo and the time of development. 

In some essential respects, then, we have discovered a programming language.
It is a language that interfaces with the concrete, biological world, and programmed
correctly, can produce complex, concrete, functioning forms. But Freeman and
Newell also, in their manipulation and matching of functional provisions of
objects to functional requirements, fully intended this to be done in a programming
language. As in any complex language, its effect (its semantics) depends entirely
on the correct sequencing of its instructions. It must form a proper program —
or it either “blows up” with logic errors or produces gibberish. Unless you wish
to be ridiculed by the programming profession, the complex, programmed sequence
does not happen by chance, no more than the instructions of a JAVA program
to display a web screen occur by luck. Some one, some thing, some force guides
the sequencing derived from the complex and rich instruction set and syntax
available. A flick of a “switch” to the wrong value and a leg grows on top of a
fly’s head — or a useless spring is placed at the wrong position on the mousetrap. 

The problem posed by Behe’s humble mousetrap remains in full force. Nothing
has changed. The use of a language still implies knowledge of its semantics, and in
the mousetrap context, this still involves the transformations, positioning, fabri-
cations, fittings, and fastenings of parts that all work toward a concrete function
and which must enfold invariance laws. The smug rejection of mousetraps
should cease, and the deep problem they represent be addressed. Until then, I
expect that we still will see liberal use of the equivalents of “co-opting” and
“commandeering,” now appearing in statements such as “evolution created this
new instruction set,” or it “modified this instruction set.”

This is not to mention one other obvious fact: there are many languages —
JAVA, COBOL, FORTRAN, C++, Assembler, BASIC. I have yet to hear of
one that was discovered just laying around, or that defined itself and published
a user manual. Some one dreamt it up. If the powerful gene/switch language is
an exception, how did this occur? 

Conclusion

This discussion should not be construed as an argument for Intelligent Design
in evolution. In Creative Evolution, with detailed argument, Bergson (1907/1911)
rejected both radical mechanism and finalism. In radical mechanism we see the
vision, accepted by Dennett and inherent in Darwin, of the great universal
machine, unrolling or unfolding its forms and creatures, with deterministic pre-
cision. The word “time” means nothing to this conception. It has never taken



MEDITATION ON A MOUSETRAP 93

to heart the implications of the simple fact that where time is melodic, where
each “instant” is the reflection of the whole history of change — nothing can
truly repeat. This undermines the very notion of deterministic causality. 

Finalism is Bergson’s term for the conception that the universe is the result
of a vast plan, an enormous idea or conception. It is simply the inverse compli-
ment of radical mechanism. Where radical mechanism drives towards the end
result via its laws and initial conditions, finalism, from the other direction,
draws the results irresistibly to the fulfillment of the great idea. The unforeseen
creativity of real, concrete time is eclipsed. Finalism, too, cannot spell t-i-m-e,
and Intelligent Design, particularly when taken “from the beginning of things,”
is in the end — finalism.

It was with deep thought that Bergson himself directed his own ship, steering
a direction between finalism and mechanism. He held to a vision of evolution
which respects the nature of time. His vision has been rejected in knee-jerk fashion
as “vitalism,” though in fact he critiqued the vitalist position. But perhaps we
are nearing the point when a more profound direction of thought on evolution
and time, and on mind and mousetraps, can be considered. 
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