
3

PROGRAMMING THE PROPELLER
WITH SPIN

The Propeller can be programmed in several languages, including the Propeller's
native languages, Spin and Propeller Assembly (PASM), as well and as C/C++. The
Propeller Experiment Controller (PEC) software is currently available in Spin,
so we will only discuss use of this language. Spin is a high-level language creat-
ed specifically for the Propeller. High-level languages are designed to be easy to
use, but do not directly give instructions to a microcontroller or computer. In-
stead, high-level languages must be transformed into a low-level language that
is specific to the hardware being used. For the Propeller, the low-level language is
PASM. The transformation from high-to low-level languages can be done by in-
terpreting during operation, or by compiling before a program begins. Gener-
ally, interpreted code is slower than compiled code. Spin presents an interesting
intermediate between an interpreted and a compiled language. Spin is initially
compiled into bytecode, but the bytecode itself is interpreted as a program runs.
PASM does not require interpretation and is thus much faster than Spin. How-
ever, as a low-level language, PASM is also generally harder to use. Fortunately,
Spin programs can launch PASM programs in a new cog, allowing an easy-to-
use Spin program to also implement fast, powerful PASM functions. The PEC
uses this technique in several cases. The code for communication with an SD
card, for example, is written in PASM and is very fast. However, it can be con-
trolled by the user with simple and efficient Spin statements.

In the following sections, we will describe the basic concepts of Spin program-
ming. Although Spin is generally not case-sensitive, we will use capitalization for
emphasis and to help distinguish code from other text. As with the overview of

13

PROPELLER EXPERIMENT CONTROLLER14

hardware, this will not be a comprehensive guide to Spin. The Propeller Manual
(Martin, 2011) should remain the primary resource. This chapter can serve as a
tutorial to Spin and programming in general. However, it is difficult to provide
a simple "Hello World" tutorial on a microcontroller without first introducing
other concepts. In order to demonstrate the principles described here, an under-
standing of connecting devices, such as buttons and LEDs, and displaying infor-
mation to the Parallax Serial Terminal or an LCD screen will be required. Much
of this is explained in later sections; the Parallax Serial Terminal is explained
at the end of this chapter, while connecting buttons, LEDS, and LCD screens
are described in Chapter 8. Therefore, to get the most out of this chapter, an
initial reading of the chapter should be followed by attempts to demonstrate the
programs described here. Additionally, returning to this chapter after becoming
more familiar with the concepts described in later chapters will also be useful.

Program Blocks

Spin programs are built from six programing blocks, each with a unique
function: CON, VAR, OBJ, PUB, PRI, and DAT. Blocks are specified simply
by typing their name. Code within each block is typically indented to enhance
readability. A program can have multiple types of each block, in any order, but
generally follow the above ordering convention. Each program starts running
with the first PUB block, and therefore each program must have one PUB block.
All other blocks are optional. Within each block, a variety of instructions can
be used, many specific to that block. For all blocks, no end-of-line characters are
needed and instructions are generally not case-sensitive.

The CON block is also known as the constant block. In this section, the pro-
gram defines constants that will never change during the program operation.
The CON block can be used to define global configuration values and assign
useful names to numerical values to make a program easy to read and modify.
For example, a constant NumberOfTrials can define the number of trials (a
single occurrence of the experimental protocol) that will occur in an experi-
ment. In this example, NumberOfTrials can be defined as the number 10. Any
portion of the program that refers to the constant NumberOfTrials actually
uses the numeric value of the constant, in this case 10. If the number of trials in
the experiment ever needs to be modified, changing the value of the constant
also updates every reference to the constant in the program. Constants are also
often similarly used to define I/O pin connections. The system clock speed is
also set in the CON block using the _clkmode and _xinfreq instructions. Note
that these clock speed instructions are case-sensitive.

The VAR or variable block is used to reserve space for variables that will change
during the program. Variables are different from constants as variables can
change, while constants cannot. For example, a variable ResponseLatency can

ProgrammIng the ProPeller wIth SPIn 15

be created to store the time until the first response during each trial. Response-
Latency for each trial can then be saved in a data spreadsheet or used by other
parts of the program. The size of a variable is also assigned in the VAR block.
In Spin, variables can be of several sizes. Byte variables range from 0 to 255 and
are best for values that will remain very small. Word variables are larger, ranging
from 0 to 65,535. Long variables are the largest and range from −2,147,483,648 to
+2,147,483,647. Most variables in experiments will be longs. As there is limited
memory on the Propeller chip, it is beneficial to use smaller sized variables when
possible, however it is unlikely that an experiment will use the Propeller’s entire
memory. It is important to remember that, in the VAR block, variables are only
assigned a name; values will be assigned at a later time.

The OBJ or object block is used to declare objects that will be used by the pro-
gram. Each object is another program that can be used by the current program.
Use of objects keeps programs organized and makes it easier to share common
code between multiple programs. Each instance of an object is given a short
reference name, then these abbreviations can be used to refer to code inside the
objects. Using objects written by others can also save time and allow access to
complicated functions that may be difficult to create. Many objects specialized
for certain tasks, such as communication protocols, mathematical functions,
or speech emulation can be obtained, for free, on Parallax’s Propeller Object
Exchange. These objects are created by Parallax staff and other Propeller users,
both professionals and hobbyists.

The PUB or public block is used to define code that can be used in a pro-
gram or by other programs. Code in PUB blocks are known as methods. Each
method in a program has a unique name listed after the PUB statement. Each
program always begins with the first public method, commonly named "Main".1
A program will only execute code in the first method unless it is explicitly told
to start another method. Although programs only require one public method,
dividing a program into multiple methods makes it easier to read and allows a
program to efficiently reuse a section of code. If one program imports another
program as an object, the first program can use any of the object program’s
public methods. These methods are public, and thus free to use. Any variables
that were declared in a VAR block can be assigned values in a public method.

The PRI or private block is identical in function to a PUB block with two
exceptions. First, a program must contain one public method to run. A pro-
gram with only a private method will not run. Second, a program cannot use
its objects' private methods. These methods are private, and thus can only be
used by the program containing them. Generally, private methods are used to

1 Note that while it is grammatically correct to include punctuation within quotations, in this doc-
ument we give priority to preserving clarity of code. In cases where quotation marks are used to
refer to a specific aspect of code, such as a method name or a string, punctuation is placed outside
the quotation marks.

PROPELLER EXPERIMENT CONTROLLER16

ensure that another program does not accidentally affect a background process
in an object. For example, the Propeller Experiment Controller software uses an
object with a private experimental clock method. The clock method is private so
that the user never accidentally interferes with the experimental clock. Instead,
public methods are available to safely interact with the clock.

The DAT or data block is used to store data in a program. Similar to a VAR
block, all data will be byte-, word-, or long-sized. However, DAT blocks differ
from VAR blocks in a few important ways. First, data in DAT blocks can be
both named and assigned a value. Second, DAT blocks are optimized to store
large chunks of data, and therefore the syntax for declaring data in a DAT block
is different than that of VAR blocks. Third, for programs used as objects, each
instance of an object will have unique variables but identical data. This is an
advanced but powerful distinction that can be used for many effects. For ex-
ample, an object may be created to communicate with a heart rate monitor. An
experiment program may use several heart rate monitor objects to interface
with multiple monitors. Each heart rate monitor object can record data from its
monitor into individual VAR blocks, while all the objects can share important
information about interfacing with the monitors in the DAT block. Finally, the
DAT block is also used to store PASM code.

In any block, code comments can be used to clarify the purpose of the block,
or of individual lines of code. In Spin, in-line comments are provided after a
single quotation mark (e.g., 'in-line comment), while multiline comments are
provided between curly brackets (e.g., {multiline comment}). Informative code
comments are also provided within the code of many programs.

Data Types

Spin uses several data types to represent data in CON, VAR, and DAT blocks.
Table 3.1 provides a quick overview of the data types that can be used in each
block. The data types will be briefly defined here with the following sections
elaborating on implementation as more programing concepts are introduced.
Integers, or non-fractional numbers, can be declared as byte-, word-, or long-
sized in VAR or DAT blocks. In CON blocks, no size-declaration is required.
Fixed-length integer arrays may also be used by declaring the size of the array
in a VAR or DAT block. Each integer in the array will be byte-, word-, or long-
sized and can be changed as needed. However, no new items may be added to
the array. Floating point numbers, or floats, are numbers with a fractional com-
ponent. These are more difficult for computers and are not supported by many
microcontrollers. The Propeller, however, does support float constants in the
CON block, and float objects are available to allow the Propeller to implement
float variables and mathematics when required. The simplest solution when
working with fractional numbers in many microcontrollers, is simply to scale

ProgrammIng the ProPeller wIth SPIn 17

the numbers up until fractions are not a concern. For example, when recording
temperature with one decimal place, such as 98.6˚F, all values could be multi-
plied by 10 to remove the need for float mathematics. If data are later transferred
to a computer, the integer numbers can be easily transformed back into floats.

Table 3.1
Data Types

Data Type CON VAR DAT
Integer Yes Yes Yes
Integer Array Yes Yes
Float Yes
String Yes Yes

Spin also supports integer numbers in several formats. What we think of as
traditional numbers are known as decimal (base 10) numbers in mathematics
and computer science. Unless otherwise noted, all numbers in Spin are deci-
mals. Binary numbers can be used by placing a percent sign before the number;
for example, %101 is a binary number equivalent to the decimal number 3.
Hexadecimal numbers can be similarly noted with the $ symbol, such as $4E.
For all numeric data types, an underscore can be used to break up a number to
increase readability. For example, the number 123456 can be written as 123_456
or 12_3456 without changing the way the number is interpreted.

Byte-sized numbers can also be interpreted as characters. Characters are any
symbol that can be displayed on a screen, including numeral characters, the
alphabet, and other symbols. For example, the decimal number 65 can be in-
terpreted as the character "A". In many programing languages, including Spin,
quotation marks are used to differentiate characters from variables and num-
bers. For example, A + 1 may refer to the variable or constant A, plus the number
1. However, "A" + "1" refers to the character "A" plus the character "1". Although
byte-sized numbers can be interpreted as characters, they are still treated as
numbers in mathematical operations such as addition and subtraction. For ex-
ample, the instruction "A" + "1" is really just another way of stating 65 + 49. Some
characters (decimals 0 to 31, and 127) also have special purposes that vary be-
tween applications. The decimals 11 and 13, for example, often indicate the start
of a new line in text documents. Appendix C provides ASCII character charts
that show the decimal and hexadecimal representations for each character.

Spin also supports string data. Strings are a data-type used to represent text
and can be considered a string of characters. In Spin, strings are denoted with
plain, double quotation marks, such as in the string: "string data". It is important
to note that some programs automatically change quotation mark characters.
For example, Microsoft Word (Microsoft Corporation; Redmond, Washington)

PROPELLER EXPERIMENT CONTROLLER18

may automatically change "string data" into “string data”. The second quotation
mark format will not work in most programming languages. Be aware of this
when attempting to use code originally written in a word processor. Each char-
acter in a string is an individual byte. For strings, a special character is needed
to indicate end of the string. Spin uses null-terminating strings that always
end with the null character, 0. To put this into perspective, consider the string
"Hello!" Note that the string is contained within quotation marks, a common
approach for programing languages. This string can be represented in an array
of bytes as 72, 101, 108, 108, 111, 33, 0. Each byte in the preceding list represents
one of the characters in "Hello!" with the final byte, 0, indicating the end of the
string. In Spin, string variables must be word-sized. The variable will not con-
tain the string itself but will instead contain the location of the string in memory
using a word-sized address.

In Spin, a program and all related variables are stored in the central hub’s 32
kB of RAM. Each byte in RAM, from byte 0 to byte 32,767, can be addressed in-
dividually using a variety of instructions. The range of 0 to 32,767 is best repre-
sented by a word-sized variable, therefore when the location of a byte is needed,
a word-sized address is usually used. For most purposes, the address of variables
in memory is not a major concern. However, it does become important with
certain types of data and operations, particularly when using strings.

Assigning and Manipulating Data

Table 3.2
Common Operators

Operator Use Description
= X = Y Constant assignment
:= X := Y Variable assignment
+ X + Y Add
- X – Y Subtract
* X * Y Multiply
/ X / Y Divide

++ X ++ Increment
-- X -- Decrement
// X // Y Modulus
#> X #> Y Limit minimum
<# X <# Y Limit maximum
^^ X = ^^Y Square root
|| X = ||Y Absolute value

ProgrammIng the ProPeller wIth SPIn 19

Spin uses a variety of operators to assign values to data types and perform
mathematical operations. Table 3.2 provides descriptions of some common
assignment and mathematical operations. One important note is that the as-
signment operator for constants differs from the variable assignment opera-
tor. Values for constants are assigned in the CON block using the = constant
assignment operator (see Figure 3.1). The constants may also be assigned in
list form (see Figure 3.2). To assign values to variables in PUB or PRI blocks,
use the := variable assignment operator. Other operators, like those used for
mathematics, are relatively straightforward and resemble those used by many
other languages.

Figure 3.1 shows a simple example of assignment and mathematical opera-
tions. In this example, the constants X and Y are declared and assigned values in
the CON block. The variables Z and DataArray are declared in the VAR block.
Note that both are byte-sized variables, thus Z and each of the 3 bytes in DataAr-
ray can range from 0 to 255. In the public method, Main, Z is assigned to be the
sum of X and Y and is therefore 3. X and Y are constants and cannot be assigned
new values. Each byte in the array, DataArray, is also assigned a value by refer-
ring to the index of that byte. Note that the index starts at 0 instead of 1, this is
a common trend to programming. The values of DataArray become 1, 2, and 3.

VAR and DAT blocks use slightly different syntax for integers and arrays.
This is because DAT blocks are designed to contain large amounts of similarly
sized data. In many cases, the use of VAR or DAT block is a matter of preference.
Figure 3.2 is an alternative to the code seen in Figure 3.1. The VAR block has
been replaced with a DAT block, and the PUB block is now empty. All data are
declared and assigned in the new DAT block. The constants in this example are
also assigned in list form. Although assigning multiple constants in list form
reduces the number of lines in a program, it may make those lines more difficult
to read. This technique is best used for a group of related constants.

CON
 X = 1
 Y = 2
VAR
 BYTE Z
 BYTE DataArray[3]
 PUB Main
 Z := X + Y
 DataArray[0] := X
 DataArray[1] := Y
 DataArray[2] := Z
Figure 3.1: Assignment example program 1.

PROPELLER EXPERIMENT CONTROLLER20

String assignment and manipulation is a little more complex. If using a com-
bination of VAR and PUB blocks, a word-sized variable must first be declared in
the VAR block. The variable will contain the location of the string in memory. In
the PUB block, the STRING instruction can then be used to create a string and
assign the string’s address to a variable. Individual characters in the string can
then be manipulated using the BYTE instruction. Figure 3.3 shows an example
of these string techniques. In the VAR block, A is declared as a word-sized vari-
able and B is declared as an array of 4 bytes. In the public method, Main, A is set
to the string "Hello!", then the bytes in B are assigned values. At the end of the
program, the B can be interpreted as the string "leo", or as a byte array contain-
ing the bytes 108, 101, 111, 0.

Figure 3.4 shows the same result using a DAT block. In this case, the DAT
block is much more concise than the VAR block. Also, notice that A is defined
as a byte array instead of a word-sized variable. This is because in Figure 3.3, A
is a word-sized variable that can be used to represent any address in memory.
For the string variable A, the address of the first byte of the string is saved using
the STRING instruction. In Figure 3.4, A is a byte array, and A already refers to
the first byte of the string.

CON
 #1, X, #2, Y
PUB Main

DAT
 Z BYTE X+Y
 DataArray BYTE X, Y, Z
Figure 3.2: Assignment example program 2.

VAR
 WORD A
 BYTE B[4]
PUB Main
 A := STRING("Hello!")
 B[0] := BYTE[A][2]
 B[1] := BYTE[A][1]
 B[2] := BYTE[A][4]
 B[3] := 0
Figure 3.3: Assignment example program 3.

ProgrammIng the ProPeller wIth SPIn 21

I/O Pins

One of the major benefits to using microcontrollers is the way they interface
with external devices. In Spin, several registers, DIRA, INA, and OUTA, are
used to control the I/O pins. DIRA is the direction register and is used to set the
I/O pins to input or output mode. Although it can be modified in several ways,
the simplest manner is to use the pin number as an index and set it to 0 for an
input, or 1 for an output. For example, the instruction DIRA[5] := 0 sets I/O
pin 5 to an input. The input state of pins can be read in a similar manner with
the INA instruction. For example, the instruction x := INA[5] assigns variable
x to be the input state of pin 5, 0 for off and 1 for on. For pins in output mode,
the OUTA instruction can be used to turn the output of a pin off or on, similar
to how the DIRA instruction can change a pin’s mode. In order to use a pin as
an output, it must first be set to output mode using the DIRA instruction. Each
cog has independent I/O registers. A cog can only control an I/O pin if its DIRA
register has been set accordingly. To prevent interference between cogs, all pins
are inputs by default. A pin will remain in input mode only if no cog sets it to an
output. However, a pin enters output mode if any cog sets it to an output.

Figure 3.5 shows an example of using the I/O instructions. In the CON block,
the pin numbers for three LEDs are saved. Recording pin numbers in the CON
block is optional, but greatly increases program readability and makes the pro-
gram easier to alter. In the PUB block, the direction for LED pins 1 and 2 are set
to output mode, and all LED pins are turned on. LED3, however, will not turn
on as it was never set to output mode using the DIRA instruction.

PUB Main

DAT
 A BYTE "Hello!", 0
 B BYTE A[2], A[1], A[4], 0
Figure 3.4: Assignment example program 4.

CON
 LED1 = 5
 LED2 = 4
 LED3 = 3
PUB
 DIRA[LED1] := 1
 DIRA[LED2] := 1
 OUTA[LED1] := 1
 OUTA[LED2] := 1
 OUTA[LED3] := 1
Figure 3.5: I/O control example program.

PROPELLER EXPERIMENT CONTROLLER22

Time Control

Spin uses several instructions to record time and to execute code at certain
times. Most important are the _clkmode and _xinfreq instructions. In the CON
block, these instructions are used to set the system clock mode. Most Propeller
development boards have a 5 MHz crystal oscillator that helps to maintain very
precise system time. The _clkmode and _xinfreq instructions tell the Propeller
how to use the crystal oscillator. Although these techniques can provide ad-
vanced control, it is best to use lines of code seen in Figure 3.6 in any program
where precise control of time is required (provided the Propeller is connected to
a 5 MHz crystal). Unlike most instructions in Spin, these two instructions are
case-sensitive.

During operation, the CNT instruction can be used to read the value of
the system counter. However, CNT can be a little arbitrary and unintuitive as
the system counter is not a standard unit of time. The CLKFREQ instruction
provides a good solution. It refers to the number of CNTs in 1 second. These
two instructions are most commonly used with the WAITCNT instruction.
WAITCNT is used to pause a cog’s activities until CNT reaches a certain
value. The paused cog will not proceed past that line of code; however other
cogs will function normally. For example, WAITCNT(CLKFREQ * 2 + CNT)
tells the Propeller to pause until CNT reaches twice the number of counts in

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
Figure 3.6: Time control example program.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 LED = 10
PUB Main
 DIRA[LED] := 1
 OUTA[LED] := 1
 WAITCNT(CLKFREQ * 2 + CNT)
 OUTA[LED] := 0
 WAITCNT(CLKFREQ * 2 + CNT)
 OUTA[LED] := 1
 WAITCNT(CLKFREQ * 2 + CNT)
 OUTA[LED] := 0
Figure 3.7: I/O and time control example program.

ProgrammIng the ProPeller wIth SPIn 23

a second, plus the current value of CNT. In other words, pause for 2 seconds.
As this method can be a little cumbersome for beginners, the PEC offers easier
alternatives.

Figure 3.7 shows an example of I/O and time control. The clock mode and
frequency are set in the CON block, and the pin number for an LED is saved. In
the Main method, the LED is set to an output. The LED turns on, the cog pauses
for 2 seconds, turns the LED off and then pauses for another 2 seconds. This
process repeats a second time.

Program Flow Control

Program flow in Spin can be controlled by conditionals and iteration (see
Table 3.3). Conditionals execute a section of code if a statement is evaluated to
be true. Spin, like many languages uses IF conditionals. IF statements use Bool-
ean operators (see Table 3.4) to evaluate a statement. If the statement is true,
an indented section of code is executed. If the statement is not true, an ELSEIF
statement may evaluate additional statements. If none of the statements are true,
an ELSE statement may be used to execute code. Consider the example in Figure
3.8. The CON block is used to set the clock mode, record pin numbers, and set a
value for X. In the Main method, all pins are set to outputs, then an IF conditional
is used to control the program flow. If X is 1, LED1 is turned on. Otherwise,
if X is 2, LED2 is turned on. If neither of these is true, then LED3 is turned on. In
this manner, different values of X can change the way the program runs.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 LED1 = 1
 LED2 = 2
 LED3 = 3
 X = 1
PUB Main
 DIRA[LED1] := 1
 DIRA[LED2] := 1
 DIRA[LED3] := 1
 IF X == 1
 OUTA[LED1] := 1
 ELSEIF X == 2
 OUTA[LED2] := 1
 ELSE
 OUTA[LED3] := 1
Figure 3.8: IF conditional example program.

PROPELLER EXPERIMENT CONTROLLER24

Spin also uses CASE conditionals that compare the value of a statement to
several potential values and execute code that matches the current value. If a
matching value is not found, code in an OTHER section is executed. The end
result is similar to that of IF conditionals. Figure 3.9 shows a CASE implemen-
tation of the program in 3.8. For most applications, the choice of IF or CASE
conditionals is a matter of preference.

Iteration, or repetition of a section of code, is implemented through REPEAT
statements (see Table 3.3). Unlike many languages that use different instructions
for each type of iteration, Spin uses variants of REPEAT loops for all forms of
iteration. To repeat a section of indented code forever, simply use REPEAT with
no qualifiers. To repeat a section of code a specific number of times, use the
REPEAT X form, where X is the desired number of iterations. The repeat loop
may also iterate a variable, X, through a specified ranged, Y to Z, by using the
form REPEAT X FROM Y TO Z. Repeat loops may also execute code UNTIL an
evaluation is true or WHILE an evaluation is true. For any form of repeat loop,
the NEXT statement can be used to skip to the next iteration, while the QUIT
statement can be used to exit the loop entirely.

Figure 3.10 shows an example of an infinite repeat loop. The CON block and
first lines of the Main method are used to setup the system clock and I/O pins.
Then, the repeat loop begins and an IF conditional inside the loop evaluates the
state of the button. If the button is off, the LED is turn off. Otherwise the LED
is turned on. This repeat loop will continue until the Propeller is turned off,
resulting in the LED being on only when the button is held.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 LED1 = 1
 LED2 = 2
 LED3 = 3
 X = 1
PUB Main
 DIRA[LED1] := 1
 DIRA[LED2] := 1
 DIRA[LED3] := 1
 CASE X
 1: OUTA[LED1] := 1
 2: OUTA[LED2] := 1
 OTHER: OUTA[LED3] := 1
Figure 3.9: CASE conditional example program.

ProgrammIng the ProPeller wIth SPIn 25

Figure 3.11 shows a more complex example of a repeat loop. In this example,
constants are not used to name the I/O pins. Instead the DIRA and OUTA in-
structions refer to the pin numbers directly. The first lines of the Main method
set pins 1 to 3 as outputs. The outer repeat loop will be repeated ten times, but it
also contains another repeat loop. The inner repeat loop increments the variable
X from 1 to 3. The inner loop also turns the output pin represented by X on, then

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 LED = 1
 Button = 2
PUB Main
 DIRA[LED] := 1
 DIRA[Button] := 0
 REPEAT
 IF INA[Button] == 0
 OUTA[LED] := 0
 ELSE
 OUTA[LED] := 1
Figure 3.10: REPEAT loop example program 1.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
VAR
 BYTE X
PUB Main
 DIRA[1] := 1
 DIRA[2] := 1
 DIRA[3] := 1
 REPEAT 10
 REPEAT X FROM 1 TO 3
 OUTA[X] := 1
 WAITCNT(CLKFREQ/4 + CNT)
 OUTA[1] := 0
 OUTA[2] := 0
 OUTA[3] := 0
Figure 3.11: REPEAT loop example program 2.

PROPELLER EXPERIMENT CONTROLLER26

waits a quarter second before repeating again. This loop will repeat three times,
then all output pins are turned off. The program flow then returns back the
outer repeat loop to repeat the code nine more times. As a result of this program,
the Propeller will turn on pins 1 to 3, a quarter-second apart, then turn all of
them off. This process repeats ten times.

Table 3.3
Conditional and Iteration Instructions

Instruction Description
IF If conditional
ELSEIF Else if — use with if conditional
ELSE Else — use with if conditional
CASE Case conditional
OTHER Other — use with case conditional
REPEAT Repeat
REPEAT X Repeat X times
REPEAT X FROM Y TO Z Repeat and increment X from Y to Z
REPEAT UNTIL X == Y Repeat until a condition is true
REPEAT WHILE X == Y Repeat while a condition is true
NEXT Go to the next iteration of a repeat loop
QUIT Quit a repeat loop

Table 3.4
Boolean Operators

Operator Use Description
== X == Y Is equal
<> X <> Y Is not equal
< X < Y Is less than
> X > Y Is greater than
=< X =< Y Is equal or less
=> X => Y Is equal or more
AND X == Y AND X == Z And
OR X == Y OR X == Z Or
NOT X == Y NOT X == Z Not

ProgrammIng the ProPeller wIth SPIn 27

Methods
Many programs contain repetitive sections of code that can be reused if moved

to modular methods. A method is simply a section of code that executes a task.
So far, we have only described single-method programs, but most programs will
use several methods. Adding a new method is as simple as adding a new PUB
block. Consider the example in Figure 3.12. This program uses the Pythagorean
theorem to calculate the hypotenuse, C, from the sides A and B. The program
does this three times using similar instructions. It is clearly repetitive. Note that,
to simplify this example, numbers have been chosen that result in an integer
hypotenuse so that no float mathematics are required.

To remove repetition from a program, a second method may be implemented.
Secondary methods allow a program to efficiently reuse a section of code. They
will not run unless called by the primary method. The primary method may also
pass parameters, or information, to the secondary methods, and in turn, the sec-
ondary method may optionally use the RETURN instruction to return a result
to the primary method on completion. Figure 3.13 shows a much more concise
variation of the program in Figure 3.12 using a second method. As with Figure
3.12, the program starts with the first listed method, in this case Main. The Main
method then calls the FindHypotenuse method and passes the integers 5 and 12
as the parameters A and B. The FindHypotenuse method calculates the hypote-
nuse and returns the result to the Main method. The Main method then calls the
FindHypotenuse method two more times with different parameters.

CON
 _clkmode = xtal1 + pll16x
 xinfreq = 5_000_000
VAR
 BYTE A
 BYTE B
 BYTE C
PUB Main
 A = 5
 B = 12
 C = ^^(A*A + B*B)
 A = 12
 B = 9
 C = ^^(A*A + B*B)
 A = 6
 B = 8
 C = ^^(A*A + B*B)
Figure 3.12: Pythagorean theorem program example 1.

PROPELLER EXPERIMENT CONTROLLER28

Multitasking

Distributing a program across multiple methods is a common programing
technique. Where the Propeller excels, however, is in executing these methods
across multiple cogs. The COGNEW statement can be used to launch a method
in a new cog, allowing the first cog to continue executing its method. As cogs will
need some space to run a method, the user must supply a temporary workspace,

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 LED = 1
 Button = 2
VAR
 LONG MS
 LONG CogStack[50]
PUB Main
 COGNEW(Blink, @CogStack)
 REPEAT
 IF INA[ButtonPin] == 0
 MS := 2000
 ELSE
 MS := 500
PUB Blink
 DIRA[LED] := 1
 REPEAT
 OUTA[LED] := 0
 WAITCNT(CLKFREQ/1000 * MS + CNT)
 OUTA[LED] := 1
 WAITCNT(CLKFREQ/1000 * MS + CNT)
Figure 3.14: Multi-cog example program 1.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
PUB Main
 FindHypotenuse(5, 12)
 FindHypotenuse(12, 9)
 FindHypotenuse(6, 8)
PUB FindHypotenuse(A, B)
 RETURN ^^(A*A + B*B)
Figure 3.13: Pythagorean theorem program example 2.

ProgrammIng the ProPeller wIth SPIn 29

called a stack space, as an array of longs. The required stack space is difficult to
determine. Typically, a large space is initially provided and decreased later if the
program needs more memory. Parallax’s Stack Length object (Martin, 2010) can
also be used to determine optimal stack size.

Figure 3.14 shows an example implementation of a multi-cog approach. The
CON block sets up the system clock and saves pin numbers for an LED and
button. The VAR block declares a long-sized integer called MS; this variable will
be used to represent a millisecond value. The VAR block also creates a long array
called CogStack for the second cog to use as a stack space. All cogs will have
access to the constants and variables. The program starts with the first method,
Main. The Main method launches a new cog to run the Blink method and pro-
vides CogStack as its stack space. Note the @ operator. This lets the new cog
know to look at the address of CogStack in memory, instead of the value of the
first long in the array. The Main method then repeatedly checks the input state of
the button. If it is off, MS is set to 2000, if it is on, MS is set to 500. Meanwhile, the
Blink method in the second cog sets LED to an output. Then, it repeatedly turns
the pin off, pauses, turns the pin on and pauses again. The WAITCNT statement
pauses for CLKFREQ/1000 * MS + CNT. The use of CLKFREQ/1000 transforms
the system count into milliseconds, and when multiplied by MS, will cause the
cog to pause for MS milliseconds. Taking the methods of both cogs into consid-
eration, the result of this program is an LED that blinks once every 2 seconds if a
button is not pressed, or once every half second if a button is pressed.

The example in Figure 3.14 is a relatively simple example of multitasking.
A clever programmer could easily find a way to implement the same function
within a single cog. However, with eight cogs, there is no harm in multitasking
for the sake of convenience, and some complex tasks are simply not possible to
implement simultaneously in a single cog. Other instructions, such as COGID,
COGINIT, and COGSTOP can be used to more precisely start and stop the ac-
tivity of individual cogs. For example, the program in Figure 3.15 is very similar
to that of Figure 3.14, except that the blinking cog will turn off after 100 blinks.

Objects

In addition to using multiple methods within a program, Spin also enables
the use of methods from other programs. These secondary programs are called
objects. Often, an object contains a library of methods dedicated to a specific
task, such as float mathematics, audio generation, or I2C communication pro-
tocols. A program may use several objects, or multiple instances of the same
object. Object programs may also call on other objects themselves. The result is
a very modular approach to programing, and the ability to implement advanced
techniques through objects written by Parallax staff and other experienced pro-
grammers. Many objects are available on Parallax’s Propeller Object Exchange.

PROPELLER EXPERIMENT CONTROLLER30

In addition to reading the descriptions online, open the objects and read the
code comments. Often the code comments contain detailed information about
how to use the objects.

Objects are imported into a program using the OBJ block. Each object is
given its own name. Public methods within that object can then be used by
the instruction Object.Method, where Object is the name given in the OBJ
block, and Method is the name of a public method within the object. A pro-
gram cannot, however, use an object’s private methods. Figure 3.16 shows an
object-based example of the Pythagorean theorem program discussed earlier.
In this example, the program MainProgram.spin imports the separate file
PythagoreanTheorem.spin as an object. Then, the main program uses the meth-
ods of the PythagoreanTheorem.spin file.

Parallax Serial Terminal

One especially useful object is the Parallax Serial Terminal (Martin, Lind-
say, and Gracey, 2009). This object allows a Propeller to communicate with the

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 LED = 1
 Button = 2
VAR
 LONG MS
 LONG CogStack[50]
PUB Main
 COGNEW(Blink, @CogStack)
 REPEAT
 IF INA[ButtonPin] == 0
 MS := 2000
 ELSE
 MS := 500
PUB Blink
 DIRA[LED] := 1
 REPEAT 100
 OUTA[LED] := 0
 WAITCNT(CLKFREQ/1000 * MS + CNT)
 OUTA[LED] := 1
 WAITCNT(CLKFREQ/1000 * MS + CNT)
 COGSTOP
Figure 3.15: Multi-cog example program 2.

ProgrammIng the ProPeller wIth SPIn 31

Parallax Serial Terminal application, or other serial terminal application, on a
personal computer, typically by using the same cable used to program the Pro-
peller. The combination Parallax Serial Terminal object and application can be
used to display information from the Propeller on a computer screen for many
purposes, including transmitting data from the Propeller, testing programing
concepts, or locating and correcting errors in a program. The Parallax Serial
Terminal object may already be available in the object library folder (see the
Software section of Chapter 4). If not, it can be downloaded from the Propeller
Object Exchange.

To use the Parallax Serial Terminal as an object, first import the object. Then,
use the Parallax Serial Terminal’s Start method. The Start method requires a
baud rate, or the rate that data are passed between the Propeller and the com-
puter, as a parameter. The default baud rate is 115,200 bits per second. Make
sure the serial terminal application also is set to the same baud rate. To use a
fast communication rate like this, the clock mode needs to be set in the constant
section. Note that the Parallax Serial Terminal does use one cog. Figure 3.17
shows the basic requirements of using the serial terminal.

Now that the Parallax Serial Terminal is running, a variety of methods can
be used to send information from the Propeller to the computer. Each method
should be preceded by the object reference. In this case, we will use the conven-
tion PST.Method. The PST.Char method prints a single byte character on the
serial terminal. Remember that certain characters have special properties. For
example, the instruction PST.Char(13) will cause the serial terminal to start a
new line. The PST.CharIn method will allow the Propeller to receive a character
typed on the serial terminal. Similarly, the PST.Dec and PST.DecIn methods

MainProgram.spin
CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ
 Pyth: "PythagoreanTheorem"
PUB Main
 Pyth.FindHypotenuse(5, 12)
 Pyth.FindHypotenuse(12, 9)
 Pyth.FindHypotenuse(6, 8)

PythagoreanTheorem.spin
PUB FindHypotenuse(A, B)
 RETURN ^^(A*A + B*B)
Figure 3.16: Pythagorean theorem program example 3.

PROPELLER EXPERIMENT CONTROLLER32

allow the serial terminal to print a decimal number, or the Propeller to receive a
decimal number from the serial terminal.

The Parallax Serial Terminal also allows the Propeller to display entire strings
on the computer using the PST.Str method. Recall that strings are actually
arrays of byte characters that always end with the null character, 0. The PST.
Str method requires the address in memory of the first character of the string. It
will display all the characters in the string, starting with the first, and stop dis-
playing characters when it reaches the null character. For a one-time use string,
the instruction PST.Str(STRING("Your string here")) can be used. The STRING
instruction inside PST.Str provides the appropriate address in memory required
by the Parallax Serial Terminal. For string variables, in the VAR or DAT section,
the @ operator can be used to tell the Parallax Serial Terminal to look for the
address of the variable in memory, instead of the data value at that address. For
example, the instruction PST.Str(@StringVariable) can be used to print string
variables. Several other methods are available to control other aspects of the
Parallax Serial Terminal, such as starting new lines, changing the cursor posi-
tions, clearing the screen, etc. Open the Parallax Serial Terminal object and read
the method descriptions for more information.

The Parallax Serial Terminal is an excellent tool for demonstrating and de-
bugging programs. It can also be used to test many of the previous examples
from this chapter. Consider the Pythagorean theorem example from Figure 3.16.
The Parallax Serial Terminal could be included in the program to display the re-
sults of the program on the computer. Figure 3.18 shows just one potential way
to integrate the Parallax Serial Terminal. In this example, the Parallax Serial
Terminal is imported and started. A 5-second delay is then included to ensure
that the user has the Parallax Serial Terminal application on the computer ready
to display information. The serial terminal then prints information about the
hypotenuse of each of the three triangles from the example in Figure 3.16. After
completion, the Parallax Serial Terminal stops, freeing that cog again. Figure
3.19 shows the results of the program in Figure 3.18.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ
 PST: "Parallax Serial Terminal"
PUB Main
 PST.Start(115_200)
Figure 3.17: Parallax Serial Terminal example program 1.

ProgrammIng the ProPeller wIth SPIn 33

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
OBJ
 Pyth: "Pythagorean Theorem"
 PST: "Parallax Serial Terminal"
PUB Main
 PST.Start (115_200)
 WAITCNT(CLKFREQ*5+CNT
 PST.Str((STRING("Starting program."))
 PST.NewLine
 PST.Str((STRING("Hypotenuse of 5 and 12 = "))
 PST.Dec(Pyth.FindHypotenuse(5, 12))
 PST. NewLine
 PST.Str((STRING("Hypotenuse of 12 and 9 = "))
 PST.Dec(Pyth.FindHypotenuse(12, 9))
 PST. NewLine
 PST.Str((STRING("Hypotenuse of 6 and 8 = "))
 PST.DEC(Pyth.FindHypotenuse(6, 8))
 PST.Stop
Figure 3.18: Parallax Serial Terminal example program 2.

Starting program.
Hypotenuse of 5 and 12 = 13
Hypotenuse of 12 and 9 = 15
Hypotenuse of 6 and 8 = 10
Figure 3.19: Parallax Serial Terminal output from Figure 3.18.

