
5

PROPELLER EXPERIMENT
CONTROLLER OVERVIEW

The Propeller Experiment Controller (PEC) software primarily consists of
two interdependent Spin objects: Experimental Event and Experimental Func-
tions. Both objects contain a variety of methods that allow the user to execute
complex tasks using simple, concise instructions. These objects were designed
to work together to fulfill the complex requirements of behavioral research, and
often use a specific workflow to implement an experiment. In this chapter, we
provide an overview of the PEC system, describing the overall roles of Exper-
imental Event and Experimental Functions, and discuss the basic workflow of
a typical experiment. More detailed descriptions of Experimental Event and
Experimental Functions are provided in Chapter 6 and Chapter 7, respectively.

Experimental Event Overview

The Experimental Event object is used to detect and control events in an ex-
periment. Each event represents a dependent or independent variable of interest
and will use its own instance of the Experimental Event object. For example,
consider an experiment that delivers food to a rat, contingent on the rat pressing
a lever while a light is activated. This experiment program might use three Ex-
perimental Event objects, one for the food delivery, a second for the lever-press
behavior, and a third for the light activation. By using three Experimental Event
objects, the PEC can easily control and record data on each event.

As behavioral experiments may employ many different types of dependent
and independent variables, four types of events are available in the Experimental

45

PROPELLER EXPERIMENT CONTROLLER46

Event object: input events, output events, manual events, and raw data events.
Input events are used to detect information from digital input devices, such as
the pressing of a lever. Although the state of a digital input (off or on) can be rep-
resented in binary, Experimental Event uses a four-state system to indicate not
only the off/on state of an input, but when the input turned off or on. At any time
during an experiment, an input event exists in one of four states: off, the device is
not currently active; onset, the device was recently off but has just been activated;
on, the device was previously activated and is still being activated; and offset, the
device was recently active but has just been deactivated.

As an example, consider an apparatus where a rat may press a lever for food.
If the lever is not being pressed it is considered off. As a rat presses the lever, it
is considered an onset only instantaneously, then the lever immediately transi-
tions to the on state. The lever remains in the on state as long as the rat holds the
lever. At the very moment the rat releases the lever, it enters the offset state, then
immediately transitions to the off state and remains off until pressed again. The
distinction between these states is important. The onset and offset states are in-
stantaneous states that mark the start and stop time of an event. Consequences
may be implemented for any of these states. For example, a food pellet may be
provided for a rat only the very instant it presses a lever (the onset state). If pel-
lets were provided during the on state, pellets would be continually dispensed as
long as the rat held down the lever, potentially filling the apparatus with food. In
some experiments, it may be useful to also implement contingencies during the
on state, such as removing a shock when a rat initially presses a lever (the onset
state) and as the rat continues to depress the lever (the on state).

In the Experimental Event object, the state of inputs is recorded as 0 (off), 1
(onset), 2 (on), and 3 (offset). To make the object easier to read, a set of constants
is to represent the event states (i.e., the constant Off represents the number 0).
This convention is also very useful for experiment programs. As such, many
programs will build upon the basic constant block seen in Figure 5.1.

Figure 5.2 shows an alternative version of this constant block, with the event
type constants assigned in list form in a single line.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 Off = 0
 Onset = 1
 On = 2
 Offset = 3
Figure 5.1: Constant block with constants representing event states.

ProPeller exPerIment controller overvIew 47

Inputs are also debounced when the states are determined. The debouncing
process requires a digital input device active for a minimum amount of time
(default 25 ms) before changing the input's state. Debouncing is used to pre-
vent input events from falsely generating multiple onsets or offsets from a noisy
input signal or circuit. Essentially, debouncing makes it easier for the Propeller
to detect a true input event. Figure 5.3 shows a timing diagram of input event
states and debouncing. The top line indicates the signal from the input device.
When the input device line is high, current is flowing from the input device to
the Propeller. When the input device line is low, current is not flowing from the
input device to the Propeller. The bottom line indicates the state of the input
event as determined by Experimental Event’s methods. A high line indicates the
input state is on, while a low line indicates the input state is off. The input state
alters only if there is a change in current from the input device that is consistent
for an entire debounce interval (25 ms). Note that the brief changes in current
at 100 and 450 ms do not cause the input state to change. The input state line
indicates two instances of the input event. Onsets occur only in the millisecond
the state changes from off to on (225 and 425 ms), while offsets occur only in the
millisecond that the state changes from on to off (325 and 625 ms).

 Figure 5.3: Timing diagram of input state and debouncing.

The PEC’s powerful four-state system provides an efficient manner to record
information about input events. In addition to the input state, the count and
duration are of each input event are recorded in the background and can be read

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 #0, Off, #1, Onset, #2, On, #3, Offset
Figure 5.2: Alternative constant block with constants representing event states.

PROPELLER EXPERIMENT CONTROLLER48

or modified at any time during an experiment. Contingencies can therefore be
easily implemented on the state, count or duration of an input event.

Output events control digital output devices such as lights, feeders, fans, and
motors. Output events also use the same four-state system as input events. How-
ever, no debouncing is required as the Propeller knows exactly when it changes
the state of an output device. When instructed to turn an output on or off, the
Propeller also updates the output event’s state, count, and duration in the back-
ground, as with input events.

Manual events are used in circumstances where an event cannot be associated
with a digital input or output device, but the four-state system is still desired.
Often manual events are used to implement the four-state system with analog or
complex devices. For example, the Propeller can generate tones by rapidly turn-
ing on and off an I/O pin connected to a speaker. The frequency the pin oscil-
lates corresponds to the pitch of the sound. Tone generation cannot be activated
in the same manner as a normal output such as a stimulus light, so the standard
output event is not adequate. Instead, a manual event can be started when the
tone starts playing and stopped when the tone stops. Manual events can also be
used for specific temporal measures that are not associated with input or output
devices, such as post-reinforcement pauses or response latency. The benefit of
using manual events is that the event state, count, and duration can be read or
modified in the same manner as with input and output events.

Raw data events are unique in that they have no associated state, count, or
duration. As with manual events, raw data events are often used to record in-
formation about analog or complex devices, both inputs and outputs. However,
raw data events are used to save a specific data value at an instantaneous point
in time. For example, raw data events can be used to save integer data from
analog or complex input devices such as temperature, humidity, or light levels.
Raw data events can also be used to record information about output events. For
example, an experiment that administers varying levels of voltage to a shock
grid may benefit from recording the voltage at the moment an animal presses
a lever to terminate shock. As the Propeller can communicate with an enor-
mous variety of sensors and other devices, the PEC software does not provide
methods to communicate with each device. Instead, browse Parallax’s Propeller
Object Exchange for objects dedicated to communicating with specific sensors.
The raw data event then provides a convenient way to save recorded information
about these devices in a manner similar to other event types.

General use of the Experimental Event object will require importing one
instance of Experimental Functions, and up to 151 instances of Experimental
Event. The 151 Experimental Event limit is a result of memory constraints of
the Propeller. The limit will not likely be encountered in practice. After using
a version of Experimental Functions’s StartExperiment method, each instance
of Experimental Event can be declared as a specific type of event: input event,

ProPeller exPerIment controller overvIew 49

output event, manual event, or raw data event. After an event is declared, several
methods are available for detecting and changing the state, count, and duration
of events. Chapter 6 provides a detailed description of these and other methods
in the Experimental Event object.

Experimental Functions Overview

The Experimental Functions object is used to execute common tasks that
are needed by many different types of automated behavioral experiments. Al-
though Experimental Functions can be used independently, it is designed to be
used with one or more Experimental Event object. Each Experimental Event
object will supply information to Experimental Functions about an event in the
experiment.

Experimental Functions has three major roles in an experiment. The first
major role is to maintain time using a precise experiment clock. The experi-
ment clock runs in a dedicated cog, meaning the clock runs in the background
and will not be affected by other code. The clock value increments each milli-
second and has a maximum value of 2,147,483,647 (the maximum value of a
long variable). It can run for about 596 hours, or 24 days. The experiment clock
has been tested for 7 consecutive hours and is still accurate to the millisecond.
Given the timing accuracy of the Propeller, longer duration tests were not con-
ducted. The experiment clock also records the number of days that have passed
since the clock was started, and the number of milliseconds that have passed in
the current day. The experiment clock value can be reset at any time. It can also
be changed to a specified value, such as one representing the current time of day.
Setting the clock value to the current time can be useful in programs that need
to execute code at specific times of the day. The Experimental Event object also
uses information from the experiment clock to detect and debounce inputs, as
well as to record the duration of input events, output events, and manual events.

The second major role of Experimental Functions is to record information
about events as they occur during an experimental session. As the Propeller’s
built-in memory is limited, an SD card is used as external storage device. Exper-
imental Functions creates a memory file on the SD card, with a default name of
"memory.txt". The memory file is used to quickly record very basic information
while the experiment is in progress. Experimental Functions collects information
from each Experimental Event object in an experiment, and records an abbrevi-
ated form of this information in the memory file. The condensed format used
to record information in the memory file enables this process to occur quickly
during an experimental session without causing any delay in the experiment.

The third major role of Experimental Functions is to save detailed data
about events after the experiment ends in a data spreadsheet, with a default
name of "data.csv". The information recorded in the memory file is not easily

PROPELLER EXPERIMENT CONTROLLER50

comprehended; however, creating a more intelligible file would cause delays
during an experiment. As a solution, Experimental Functions creates the
concise memory file during an experimental session, then after the session is
complete, uses the memory file to create a detailed data spreadsheet. The data
spreadsheet can then be viewed in programs such as Microsoft Excel. Figure
5.4 shows an example of the data spreadsheet, exported from Excel as a pdf file.
The data were generated by a fixed-ratio schedule of reinforcement program,
with a session duration of 1 minute. The event column refers to the events
in the program, in this case a response event, and a reinforcer event. These
correspond to two Experimental Event objects in the program. The instance
column refers to the number of the event, such as response instance 1, the
first response. The onset and offset columns refer to the start and stop times
of an event, respectively. Duration refers to the duration of a single instance of
an event, while total duration refers to the combined duration of all instanc-
es of an event. Inter-event interval refers to the time between events of the
same type. Note that an inter-event interval cannot be calculated for the first
instance of an event. Finally, total occurrences refers to the total number of
times an event occurred in a session. When the data spreadsheet is produced,
it is initially sorted by event type. In most spreadsheet programs, the data can
be sorted by column. In this example, the data were sorted by onset so that
events appear in chronological order. Raw data events use a slightly different
set of column headings and will be described in more detail in Chapter 7.

Figure 5.4: An example of the standard data spreadsheet.

ProPeller exPerIment controller overvIew 51

In addition to these three major roles, Experimental Functions also offers
many other techniques that are useful to experiments but are not required by the
standard workflow. For example, random number generation can be useful for
randomly assigning a subject to an experimental condition or creating probabi-
listic outcomes such as in a variable-ratio schedule of reinforcement. Signal gen-
eration methods are another highly versatile technique included in Experimen-
tal Functions. They can be used for a variety of purposes such as creating audio
tones, activating LEDs at different brightness levels, or controlling motor speed.
Experimental Functions also provides methods for advanced users to read and
write files to an SD card to create a customized data output format. The methods
of Experimental Functions will be discussed in more detail in Chapter 7.

General Workflow of the Propeller Experiment Controller

The PEC is designed around a specific workflow that integrates Experimental
Event and Experimental Functions. Figure 5.5 provides a graphic illustration of
the general workflow of an experiment program. First, Experimental Functions
and a single, or multiple, Experimental Events are imported. Then, Experimen-
tal Functions’s StartExperiment method creates a memory file on the SD card.
The experiment clock is also started at this time. Next, each Experimental Event
is declared as an input event, output event, manual event, or raw data event
using Experimental Event’s declare methods. The program now enters the main
repeat loop. This loop will vary per application of the PEC but will include ev-
erything needed for that application. It can be considered the main section of
the program. Inside the loop, input events are first detected using Experimen-
tal Event’s detect methods. After the state of input events is determined, other
events can be affected based on the design of the experiment using a variety of
methods from Experimental Event. Any changes to an event are quickly recorded
in the memory file using Experimental Functions’s Record method. The repeat
loop is not infinite, some condition, such as session length or fixed number of
trails, will cause the loop to terminate. This can be considered the end of the
experiment. The activities that occur in the repeat loop, as well as the condition
that causes the loop to terminate, are caused by a combination of specific in-
structions from Experimental Event and Experimental Functions, are covered
in later chapters, as well as basic Spin logic. This section is the most free-form,
and while it does require users to carefully consider what they want the program
to do, it also provides substantial freedom for designing many types of experi-
ments or other automated projects.

After the main repeat loop terminates, Experimental Functions’s Prepare-
DataOutput method creates the first part of the data spreadsheet file on the SD
card. Then, the Experimental Functions’s SaveData method can be used to save
detailed data about each event using the contents of the memory file. After data

PROPELLER EXPERIMENT CONTROLLER52

from every event are saved, Experimental Functions’s Shutdown method un-
mounts the SD card, allowing the user to transfer the data spreadsheet to the
computer. This basic workflow enables many types of experiments and auto-
mated projects. The user is also free to modify this workflow to fit their needs.
Chapter 8 provides more detailed examples of how the PEC and this workflow
are used in practice.

Figure 5.5: General workflow of an experiment program.

