
9 

FUTURE DIRECTIONS AND 
CONCLUSION

Future Directions

The Propeller Experiment Controller (PEC) was developed to meet the needs 
of research in our laboratory, beginning with a master’s thesis on sexual condi-
tioning in pigeons (Varnon, 2013), and the development of an inexpensive condi-
tioning and learning laboratory (Varnon and Abramson, 2013). As we continued 
to use the PEC in our laboratory, additional features were added to solve unique 
problems that we encountered. For example, the methods to record and save raw 
data events were developed specifically to help a student record light emitted by 
bioluminescent algae. Development of raw data events allowed us to investigate, 
not only if the algae illuminated, but also the brightness of the light. Many such 
features have been added to the PEC over the course of its development, and these 
additions have proved to be instrumental to using the Propeller as an experiment 
controller. In the following sections, we describe some potential areas of future 
development that may also be useful in many applications of the PEC. 

Integration with Python for the Personal Computer

One potential area of growth for the PEC is to develop supporting software 
for the personal computer. To that end, we have begun developing an interface 
for the PEC using the Python programming language (Python Software Foun-
dation, Python.org). Python is a useful language for this project because it is 

127



PROPELLER EXPERIMENT CONTROLLER128

free, runs on any operating system, is very easy to use, and even aesthetically 
resembles Spin in some manners. The Propeller Python Interface (PPI) is still 
in its infancy but could provide many advantages. 

First, use of the PPI can solve the maximum instances problem of the PEC. The 
PEC has a limit to the number of instances of a single event that can be saved to 
the data spreadsheet. By default, only 1,000 instances of an event can be saved. 
Although there is no practical limit to the number of events that can be recorded 
to the memory file during an experiment, processing that information and saving 
it to the data spreadsheet has additional requirements. The limit is encountered 
when the Propeller attempts to read the entire memory file for information about 
a specific event, such as a lever-press. The Propeller uses the very concise infor-
mation recorded in the memory file to calculate the more detailed information 
that appears in the data spreadsheet. As the Propeller’s RAM is limited, it simply 
cannot process the data for more than 1,000 instances of an event using the tech-
niques currently implemented in Experimental Functions. Personal computers 
do not have the same memory limitations as the Propeller, and therefore use of 
a computer to create the data spreadsheet from the memory file can solve the 
maximum instances problem. Currently, the PPI does have a rudimentary ability 
to read the PEC’s memory file, and then transform that information into a data 
spreadsheet. Unfortunately, the program is not user-friendly, nor is it well-tested. 
In principle, however, it shows great promise. Use of such a program on a person-
al computer raises the maximum instances limit substantially. For example, using 
a 64-bit computer, the maximum instances of a single event that can be processed 
is over nine quintillion (as determined by Python’s sys.maxsize method).

Second, the PPI could provide additional data analysis and sorting techniques, 
such as counting the number or duration of events that occurred in specific time 
interval bins. Such “binning” techniques can be conducted by the PEC, but only if 
they are carefully programed in advance. A post hoc method to sort the data may 
be useful. The PPI could also provide integrated statistical analysis and graphing 
through the SciPy package (Jones et al., 2001), a free scientific analysis package for 
the Python. We have made use of SciPy techniques in many projects, but we have 
not formally integrated these techniques with the PPI.

A third benefit that could be provided by the PPI is to allow the Propeller to 
interface with the computer during an experiment. This could enable data to 
be displayed on a computer. It could also enable commands to be sent from the 
computer to the Propeller, controlling experimental parameters or some other 
aspect of the experiment. Interfacing the Propeller with a computer during an 
experiment could be accomplished in two ways. A modification of Experimen-
tal Functions's Record and RecordRawData method could send information to 
the computer through the USB programming cable using a serial protocol. This 
would enable a simple modification of existing programs to send data to a per-
sonal computer instead of an SD card. Alternatively, the Experimental Event 



future dIrectIonS and concluSIon 129

and Experimental Functions objects could be translated into Python, allowing 
the computer to control the Propeller directly. Both techniques could be useful. 
While one major strength of the PEC is that it does not require a constant con-
nection to a computer, some things would only be possible with such integration. 
For example, integration would allow graphs to be displayed on the computer 
monitor as the data are collected and updated in real time. A full translation of 
the PEC to the Python programing language may also make the PEC more ac-
cessible to individuals that are already familiar with Python.

Translating to C/C++

At the time the PEC was developed, the Propeller’s custom language, Spin, 
was the most convenient option. Now, however, there are many easy options, 
including the popular C and C++ programming languages. With the advent of 
Simple IDE, Parallax began officially supporting C/C++ programing for the Pro-
peller. Translating the PEC to C/C++ would likely make the PEC more accessible, 
as many programmers have some experience in these languages. The Arduino 
family of development boards (Arduino; New York, New York), in particular, has 
popularized programing microcontrollers with C/C++. Although the Propeller 
and the PEC offer many benefits compared to other systems, some users may be 
hesitant to make the switch because of the perceived difficulty of learning a new 
language.

Conclusion

The PEC provides a unique opportunity to implement many types of behavior-
al experiments at low cost without sacrificing technological power. In many cases, 
the PEC is only limited by the imagination of the user. Although programming 
skills are required to make the most of the PEC, this is true for many systems. 
Even behavioral control systems that advertise that programming is not required 
often use a visual form of programming that provides limited control. For those 
without programming experience, we offer a set of prewritten programs with 
modifiable experimental parameters (Varnon and Abramson, 2013; CAVarnon.
com). For those with some programming experience, the PEC offers a world of 
opportunity.

The PEC also makes a very affordable foundation for teaching laboratories. 
Computer simulations, such as Cyber Rat((AI)2; Winter Park, Florida) and 
Sniffy the Rat (Graham, Alloway, and Krames, 1994), have been frequently used 
as replacements for inquiry-based learning exercises with live animals, in part 
because the hardware and software to implement automated behavioral experi-
ments is so expensive. Although potentially useful, we do not believe that exclu-
sively relying on computer simulations provides the same benefits as interacting 



PROPELLER EXPERIMENT CONTROLLER130

with a live animal. The PEC is a great alternative to computer simulations be-
cause it can be implemented with a reasonable budget. Depending on the exer-
cises and species used, the laboratory can also be taken to existing classrooms, 
instead of requiring a dedicated room to contain computers and equipment too 
large and cumbersome to transport.

The PEC may also promote scientific development in graduate and under-
graduate students. Based on our own personal experience, we believe that greater 
student involvement in the areas of apparatus design and automation leads to 
greater interest. Many of the programing skills learned while working with the 
PEC can also be of great use after graduation. Unfortunately, apparatus design is 
becoming a lost art. Interested students are often prevented from learning appa-
ratus related skills due to the high cost of commercial equipment. As the PEC is 
so inexpensive, students are able to purchase or borrow a Propeller without much 
financial risk. This may encourage students to learn how to construct their own 
equipment and even permit them to conduct behavioral research and automated 
demonstrations with farm animals or household pets. 

In conclusion, the PEC is a powerful and versatile device that presents many op-
portunities for anyone interested in a scientific study of behavior. From data-loggers 
for a single sensor, to devices to coordinate and control several experimental ap-
paratuses, the PEC can do it all. We will continue to provide software, and in-
structional material related to the controller at CAVarnon.com with the goal of 
keeping projects related to the controller as open-source as possible. Much like 
open-access journals, we expect that open-source technologies such as the PEC 
will greatly increase research novelty and productivity. We also hope that making 
the PEC available and easily accessible will help encourage a new generation of 
behavioral researchers.




