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Fundamental features of special relativity and quantum mechanics, cornerstones of
modern physical theory, are explored and found to allow and support the notion that
mental activity lies at the core of the physical world. This notion is consonant with the
proposition that light, in addition to its explicit formulation in special relativity, may be
regarded as an expression of mental activity and as such, capable of instantaneous
transmission of information. Precise and reproducible experimental evidence supporting
quantum mechanics is shown to constitute evidence for the important involvement of
mental activity in the functioning of the physical world.

Special Relativity

The law of inertia states that a physical body distant from other bodies
continues in a state of rest or uniform translatory motion (i.e., with constant
velocity and direction and without rotation). A central tenet of the postulates
of special relativity is that the velocity of light is invariant and is a finite
constant in any inertial frame of reference (i.e., a spatial coordinate system,
attached to some physical body, in which the law of inertia holds). It is this
tenet, along with the postulation of inertial frames of reference that are in
uniform translatory motion relative to one another and for which the laws of
nature hold, that allows for the results of special relativity. The notion of a
physical existent having the same finite velocity in such frames of reference
points to a view of light that is unique and seemingly paradoxical.

The importance of light in special relativity is reflected in its central position
in the development of the concept of time. In his original paper proposing the
theory of special relativity, Einstein {1905/1952) noted that a useful notion of
time relies on some means for determining the simultaneity of physical occur-
rences at spatial locations distant from one another. He defined simultaneity
for an inertial frame of reference in terms of the motion of light and went on to
develop the relativity of simultaneity and other results of special relativity on
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the foundation of this definition. Specifically, Einstein noted that simultaneity
(or the common time of clocks) is delineated for an inertial frame of reference
when, by definition, the time required for a ray of light to travel from a spatial
point A to a spatial point B is equal to the time required for a ray of light to
travel from point B to point A.

There is an inconsistency arising from the use of the motion of light, which
has an invariant velocity in any inertial frame, to define simultaneity and the
stipulation of special relativity that no physical existent may have a velocity
greater than that of light. In his popular book on special and general relativity,
Einstein (1961) himself emphasized the importance of being able to empirically
validate his definition of simultaneity:

Lightning has struck the rails on our railway embankment at two places A and B far distant
from each other. ] make the additional assertion that these two lightning flashes occurred
simultaneously. . . . The concept [of simultaneity] does not exist for the physicist until he
has the possibility of discovering whether or not it is fulfilled in an actual case. We thus
require a definition of simultaneity such that this definition supplies us with the method by
means of which, in the present case, he can decide by experiment whether or not both the
lightning strokes occurred simultaneously. As long as this requirement is not satisfied, 1
allow myself to be deceived as a physicist (and of course the same applies if I am not a
physicist), when I imagine that 1 am able to attach a meaning to the statement of simul-
taneity. ([ would ask the reader not to proceed farther until he is fully convinced on this
point.) {pp. 21-22)

Given the above noted use of light in defining simultaneity and the limita-
tion on the velocity of physical existents, there is no basis within the theoret-
ical structure of special relativity for predicting that the establishment of simul-
taneity for an inertial frame of reference will be demonstrated in an empirical
test. For prediction to have a valid foundation, there must be some basis for the
transfer of information that is faster than the velocity of light. The
circumstance is somewhat analogous to that found in statistical mechanics
where the theoretical derivation from first principles of various distributions
(e.g., the Boltzmann distribution) is required for an adequate experimental test
of these distributions (Eisberg and Resnick, 1974; Tolman, 1938). Without such
a derivation, empirical data provide only a post hoc basis for knowledge con-
cerning the physical world and do not support one having a predictive
component. Given the invariant velocity of light in any inertial frame, a
predictive basis essentially requires an existent capable of instantaneous trans-
mission of information. A physical existent of this sort would be the basis for a
Newtonian-type mechanics relying on a Galilean-type rather than Lorentz-
type transformation for the space and time coordinates of inertial frames that
are in uniform motion relative to one another. This Newtonian-type of
mechanics is refuted with special relativity.

A physical event has both spatial and temporal coordinates. As the temporal
aspect of physical events in special relativity is ultimately founded on Einstein’s
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definition of simultaneity, there is no basis within special relativity for predic-
tions involving the temporal aspect of these events. This conclusion regarding
time can be extended readily to the spatial aspect of these events because
taking a meaningful measurement of length essentially involves determining
simultaneously the spatial coordinates of at least two physical events. Even
though predictions regarding physical events are limited within the theoretical
structure of special relativity, it is evident that predictions regarding physical
events are made using special relativity as the informational source and that
these predictions have been experimentally confirmed. The nature of this
prediction requires clarification to further our understanding of the theoreti-
cal activity underlying the special theory of relativity and the empirical data
which support it.

Spacelike Separated Events

Spacelike separated events are physical events separated such that the
absolute value of the quotient obtained by dividing the spatial distance
between the events by the temporal interval between the events is greater
than the velocity of light. In a case where x; and x; represent the spatial
coordinates of spacelike separated events A and B respectively in a one
dimensional, spatial coordinate frame, t; and t, represent the temporal coor-
dinates of A and B respectively, and ¢ represents the velocity of light, the
mathematical formulation of spacelike separated events can be represented as
[(x2 — x1) f(t2 — t1)| > c. Essentially, light originating at one of the events
cannot affect the other event. Given Einstein's definition of simultaneity of
spatially distant events for an inertial frame of reference, the temporal
coordinates of spacelike separated events (in the case of A and B, t; and ¢,)
cannot be meaningfully compared within the theoretical structure of special
relativity as elucidated by Einstein. The consideration of spacelike separated
events presupposes a common time of the clocks involved in determining the
temporal coordinates of these events. A meaningful comparison of these coor-
dinates requires synchronized clocks, and Einstein’s definition of this synchro-
nization essentially involves two events in which light originating at one event
does affect the other event.

The use of spacelike separated events in special relativity is not based on a
clear spatiotemporal foundation rooted in the theoretical structure of special
relativity. It is very interesting that when an experiment using matched space-
like separated events was conducted (Aspect, Dalibard, and Roger,1982), the
results provided support for the existence of a correlational relationship
between these events. Further, the general theoretical structure of quantum
mechanics that these results support indicates that these correlations are
independent of the spatial distance between the events. As the spacelike
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separated events and the correlational relationship do not appear to have a
basis within special relativity, and as a physical existent capable of the instanta-
neous transmission of information would reintroduce a Newtonian-type
mechanics, it is proposed that these results constitute evidence for the postu-
lated nature of these events and the correlational relationship between them.
This proposal is also supported by the absence of a basis for spatiotemporal
prediction within the theoretical structure of special relativity and the circum-
stance that this prediction, which certainly has a mental component, is
supported by experimental data.

The Relativity of Simultaneity

Another argument for the involvement of mental activity in the function-
ing of the physical world is found in Einstein’s (1905/1952) discussion concern-
ing the relativity of simultaneity. In this discussion, Einstein proposed that for
two inertial frames of reference that are in uniform translatory motion relative
to one another, there are different common times of the clocks situated in the
respective inertial frames of reference. Einstein, though, depended on the
clocks of one inertial frame of reference being synchronized with the clocks of
the other inertial frame in order to determine whether simultaneity is absolute
or relative. Consider that there exists one inertial frame for which simultaneity
is defined in accordance with Einstein’s precept and that the question is posed
whether simultaneity occurs in exactly the same way in a different inertial
frame in uniform translatory motion relative to the former frame? To answer
this question, one must first establish how simultaneity could possibly occur in
exactly the same way in the latter frame as in the former in order to make a
comparison to determine whether it does occur in exactly the same manner. In
noting that the time of clocks synchronized in one inertial frame can be used
without alteration to set clocks in another inertial frame that is moving
uniformly relative to the former, Einstein had his basis of hypothesized
absolute simultaneity from which he could then determine whether simulta-
neity is indeed absolute or relative. An objective physical existent cannot be
the basis for establishing this conditional characteristic regarding simultaneity.
The velocity limitation of special relativity excludes any objective physical
existent with a velocity greater than that of light from being this basis; light
itself, as postulated in special relativity, has an invariant velocity in any inertial
frame and thus cannot be the basis. The basis for this conditional characteristic
concerning absolute simultaneity, which Einstein concluded is not actually the
case, appears to be theoretical or mental in nature.

Exploring Einstein’s 1905 argument on the relativity of simultaneity will
point out a problem this hypothesized absolute simultaneity caused. It will also
show that the resolution to this problem lies in the imagined nature of certain
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kinematical quantities that are employed by Einstein in demonstrating the
relativity of simultaneity. In his argument, Einstein considered one of the two
inertial frames of reference that are in uniform translatory motion relative to
one another “stationary” and the other inertial frame “moving.” Further, he
required that the time of clocks synchronized in the “stationary” frame be
used in the “moving” frame in order to determine the flight times of a light ray
between the ends of a rod considered at rest in the “moving” frame and aligned
along the direction of the relative motion of the inertial frames. (This rod, of
course, is considered moving from the standpoint of observers in the “station-
ary” frame with the same velocity as the “moving” frame.)

In Einstein’s argument, simultaneity is defined in the “stationary” frame in
terms of the invariant velocity of light, and thus the velocity of light in this
frame is constant. When this synchronization is used by observers in the
“moving” frame, the light ray, seen by observers in both inertial frames, has a
velocity of ¢ — v or ¢ + v relative to the observer in the“moving” frame, as
deduced by the “stationary” observer (c is the invariant velocity of light; v is
the uniform velocity of one inertial frame relative to the other inertial frame).
Whether the light ray has the velocity ¢ — v or ¢ + v depends on whether the
ray is moving in the same direction as the “moving” frame or in the opposite
direction. When an observer in the “moving” frame applies Einstein’s defini-
tion of simultaneity from the 1905 paper (which is sensible only with the
constant velocity of light in an inertial frame), a contradiction results. The
reason is that Einstein has just demonstrated that light has different velocities
relative to the “moving” observer (as deduced by the “stationary” observer
and known by the moving observer), depending on the direction of travel of
the light relative to the direction of travel of the “moving” frame. It is just this
juxtaposition of velocities that results in the relativity of simultaneity. When
the observer in the “moving” frame applies the criterion for simultaneity, he
finds that this criterion is not met because the flight times of the light ray
between the ends of the rod are not equal. Thus, Einstein concluded that when
clocks at rest in an inertial frame are synchronized in accordance with his
definition, clocks at rest in another inertial frame moving in uniform trans-
latory motion relative to the former frame are not so synchronized.

Because of the significance of the theory being considered, I want to review
Einstein’s argument in more detail. In developing his argument, Einstein (1905/
1952) wrote {(including the following footnote):

We imagine further that at the two ends A and B of the rod [moving with uniform velocity
relative to the stationary inertial system], clocks are placed which synchronize with the
clocks of the stationary system, that is to say that their indications correspond at any
instant to the “time of the stationary system” at the places where they happen to be. These
clocks are therefore “synchronous in the stationary system.”

We imagine further that with each clock there is a moving observer, and that these
observers apply to both clocks the criterion established. . . for the synchronization of two
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clocks [that the flight time of a light ray in an inertial frame of reference from spatial point
A to spatial point B is equal to the flight time of a light ray from point B to point A]. Let a
ray of light depart from A at the time* t4, let it be reflected at B at the time ts, and reach A
again at the time t'a. Taking into consideration the principle of the constancy of the
velocity of light we find that

TAB TAB
tg — ta =——— and t'a—tp = ———

c—v cto

where 1ap denotes the length of the moving rod—measured in the stationary system.
Observers moving with the rod would thus find that the two clocks were not synchronous,
while observers in the stationary system would declare the clocks to be synchronous.

**“Time” here denotes “time of the stationary system”” and also “position of hands of the
moving clocks situated at the place under discussion.” (p. 42)

Please notice that in Einstein’s argument, observers in the “moving” system set
their clocks in accordance with the synchronization of clocks in the “station-
ary” system. He specified that these “moving” observers apply his definition of
simultaneity to the flight times of the light ray between the ends A and B of the
rod. When this definition of simultaneity is applied by the “moving” observers,
they, of course, find that their clocks are not synchronized (i.e., that the flight
time from A to B does not equal the flight time from B to A).

In his popular book on special and general relativity, Einstein again devel-
oped his argument on the relativity of simultaneity in terms of the knowledge
held by a uniformly “moving” observer of the relative velocitiesc +vandc —u.
In developing his argument involving a “moving” observer located midpoint
on a railway train between positions A and B (on the train for him) and a “sta-
tionary” observer on the embankment also located midway between positions
A and B (on the embankment for this observer), Einstein (1961) wrote con-
cerning two beams of light emitted from A and B and meeting at the “sta-
tionary” observer:

Now in reality (considered with reference to the railway embankment) he [the observer on
the train] is hastening towards the beam of light coming from B, whilst he is riding on ahead
of the beam of light coming from A. Hence the observer will see the beam of light emitted from
B earlier than he will see that emitted from A. Observers who take the railway train as their
reference-body must therefore come to the conclusion that the lightning flash B took place
earlier than the lightning flash A. (emphasis added) (p. 26)

The way the “moving” observer comes to this conclusion is in juxtaposing
the invariant velocity of light in his inertial frame (which is responsible for the
synchronization of his clocks) and the relative velocities ¢ + v and ¢ — v which
the light beams have relative to him and which are deduced by the “station-
ary” observer on the embankment. If, for example, the “moving” observer
does not care about the relative velocities c +wv and ¢ — v but only cares about
the invariant velocity of light, he will, of course, not see the light beam emitted
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from B earlier than the light beam emitted from A. He will see the beams
emitted from A and B at the same time, as does the “stationary” observer.
Remember that the “moving” observer, using only his standpoint, considers
himself at rest in his inertial frame as well as the positions A and B (which for
him are on the train). Instead of considering the beams to emanate from places
fixed on the embankment, as the “stationary’’ observer supposes, the “mov-
ing” observer, in regarding his frame as the “stationary” frame, considers the
light beams to emanate from places fixed relative to the train. (This lack of a
preferred inertial frame from which to consider the motion of light is what
allows the argument concerning the relativity of simultaneity to be made from
either inertial frame.) The relativity of simultaneity would not be demon-
strated if the “moving” observer was not aware of the relative velocities ¢ + v
and ¢ — v deduced by the “stationary” observer.

An easy way out of the dilemma (perhaps better put—an easy way to
postpone the dilemma) is not to concern oneself with light moving between
the ends of the “moving” rod, but instead, to use other physical existents.
Then there is no contradiction; but circumstances may still exist, and must be
accounted for, where light is used (as it is in both Einstein’s 1905 paper and his
popular account of the relativity of simultaneity). Very importantly, in special
relativity, simultaneity (and thus time, and as a consequence of Einstein’s
arguments, also space) depends on the motion of light.

There is a way to resolve the inconsistency. As has been pointed out, the
“moving” observer knows ¢ + v and ¢ — v are velocities of the light ray/s
relative to him as deduced by the “stationary” observer. These velocities,
though, are of course not the velocity of light the “moving” observer meas-
ures: This velocity, in accordance with empirical evidence and Einstein’s pos-
tulate on the invariance of the velocity of light in all inertial frames, has the
value ¢. These deduced velocities of light, c +v and c — v, are correctly regarded
as imagined (or more generally of a cognitive nature) because observers in the
“stationary”’ frame consider them to be velocities of light judged by “moving”
observers while actual measurements by these “moving” observers show the
velocity of light to be invariant. It is important to note that these imagined
velocities are used by a “moving” observer himself in the argument demon-
strating the relativity of simultaneity.

Because the velocities deduced by a “stationary’” observer as regards the
motion of light relative to a “moving” observer may be considered imaginary
does not mean these velocities are without physical significance. They are
needed in the argument demonstrating the relativity of simultaneity, and thus
also in the arguments demonstrating the relativity of length and temporal
duration in inertial frames that are in uniform motion relative to one another.

Thus, the inconsistency concerning light having the invariant velocity ¢ in
all inertial frames and the velocities ¢ +v and ¢ — v relative to the “moving”
observer as deduced by the “stationary” observer (and also known by the
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“moving” observer) is resolved by considering the velocities ¢ + v and ¢ — v
imagined and the invariant value ¢ the actual or real velocity of light (i.e., the
velocity that is measured).

I should note that in Newtonian mechanics, the theory superseded by
special relativity, there is no difference between what an observer in the
“stationary” frame deduces the velocity of some physical existent to be relative
to an observer in the “moving” frame and what the observer in this latter
frame actually measures the velocity of this physical existent to be. In
Newtonian mechanics, this is basically due to the absolute simultaneity in
inertial frames of reference that are in uniform translatory motion relative to
one another (as reflected in the classical transformation law t' = t, where t is
the time in one inertial frame and ¢’ is the time in the other inertial frame).
Given absolute simultaneity, in Einstein’s 1905 argument on the relativity of
simultaneity, when the classical addition of velocities is applied by an observer
in the “stationary” frame to determine what an observer in the “moving”
frame judges the velocity of the ray of light moving between the ends of the rod
to be, he (the “stationary”” observer), of course, obtains the effective velocities
¢ —vandc + v When the observer in the “moving” frame actually measures
the velocity of this light ray, whose clocks are synchronized with the clocks of
the “stationary” frame due to absolute simultaneity, he actually would meas-
urec —wvandc +u (Of course, empirical evidence does not support this result.)

Quantum Mechanics

Another formulation of the ideas regarding instantaneous transmission of
information concerning the physical world may be made by examining the
empirically well-supported theory of quantum mechanics. In addition to
special relativity, quantum mechanics constitutes part of the bedrock of
modern physical theory. Various features of this theory will be reviewed. This
review, perhaps seeming at first a bit foreign to psychologists, will set the stage
for points that are to be made concerning quantum mechanics and the
instantaneous transmission of information concerning the physical world.

The Schroedinger Equation

A central element of quantum mechanics is the time dependent
Schroedinger equation, initially developed by Erwin Schroedinger in 1925. The
Schroedinger time dependent equation is a partial differential equation that
describes the motion of a particle considered as a packet of waves (Eisberg and
Resnick, 1974; Gasiorwicz, 1974). It sets constraints on the form of the wave
function associated with some particle once the force acting on this particle is
specified by noting the potential energy corresponding to the force. In physics,
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various partial differential equations are used to describe different kinds of
wave motion (e.g., a wave in a string). A differential equation is a commonly
encountered type of equation that has a function as its solution. That the
Schroedinger equation is a partial differential equation means that it is a
relation between its solution, i.e., W(xt), and particular derivatives of W(x,t)
with respect to the independent space and time variables x and t. Because
W(x,t) is dependent on more than one variable, these derivatives must be
partial derivatives.

It is understandable that after deBroglie proposed in 1924 that physical
existents traditionally considered particles could also have associated wave
properties, Schroedinger attempted to develop a wave equation that would
describe the motion of these particles. However, as will be discussed later, the
Schroedinger wave equation has a very unusual nature that distinguishes it in a
fundamental manner from wave equatlons found in classical mechanics. The
equation may be written

IP(x,t) _ Tl 9* \If(x,
ox’

t)
2 >m +V(x,t) ¥ (x,t)

ik
where W(x,t) (the wave function) is a solution for a particle moving in a one
dimensional spatial frame, x, through a potential V (x,t) which may have spatial
and time dependencies. i is /—1; Tt is the quotient of Planck’s constant, a small
quantitative value, divided by 27r; and m is the mass of the particle. 9 is the
symbol used for partial differentiation. [Partial differentiation refers to differ-
entiation over one of the independent variables, e.g., x in ¥ (x,t), upon which
some function is dependent while the other independent variable/s are held
constant, e.g., t in ¥ (x,t).] That ¥ (x,t) is a function means that the value of the
variable ¥ depends on both variables x (space) and t (time). (¥ is said to be a
function of x and t.) The value of ¥ (x,t) at a particular spatial and temporal
coordinate is designated a probability amplitude, the reason for which will be
evident as the discussion progresses.
In quantum mechanics, another key equation is the time independent
Schroedinger equation

169
m de

This equation, which soon will be derived from the time dependent
Schroedinger equation, is known as an eigenvalue equation, with E the
eigenvalue and representing the energy of a physical system (e.g., in a one
dimensional spatial coordinate frame, an electron moving in a potential, V (x),
having only a spatial dependence). i, i, and m are the same as in the time
dependent Schroedinger equation. The partial differentiation symbol J has
been replaced by d because the time independent Schroedinger equation is an

Eyi{x) = + VU (x).
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ordinary differential equation; the differentiation is over the only variable
upon which the function, which is the solution to the equation, depends. The
solution, yi(x), is the corresponding energy eigenfunction, a function which is
distinct from ¥ (x,t) and which varies only in x. In quantum mechanics, much
of the description of physical systems is given in terms of eigenfunctions. In
fact, solutions to the time dependent Schroedinger equation concerning some
physical system can be described in terms of the complete set of energy
eigenfunctions concerning the system to which a time component is added.

The time independent Schroedinger equation may be used in the derivation
of the various conservation principles found in classical mechanics as well as
certain conservation principles pertaining only to quantum mechanics. The
manner in which the conservation of energy may be so derived will be
indicated and will provide an avenue to discuss some interesting features of
quantum mechanics.

The conservation property of the time independent Schroedinger equation
derives essentially from the openness to separation of the time dependent
Schroedinger equation in which the potential V(x) has only a spatial
dependence such that certain solutions ¥(x,t) may be split into a space
component, ¥(x), and a time component, ¢(t) [with ¥(x,t)=y(x)p(t)]. In
separating the variables x and ¢ in the time dependent Schroedinger equation,
(%) p(t) is substituted for W(x,t) in the equation and both sides of the equation
are divided by ¥(x)(t)

ih__ dy(oe() _ H’ RLEL0) + Vi )!/f(x)qb(t)
YOO ot mp(IP(t) PO P(t)
As the partial differentiation on the left side of the equation is with respect to

t, ¥(x) may be taken out of this differentiation; for a similar reason ¢(t) can be
taken out of the partial differentiation on the right side. Thus

ihg(x) det) _  H)  dy®) +Vix )a,b{x)¢>(t)

YOIH(t)  dt 2my()P(t)  dx’ P p(t)

and

L dgty Ky
o) dt [ m +v()¢()](//()

The last equation is the separated time dependent Schroedinger equation.
Because each side of the equation is dependent on a different variable,
separation of the equation results in each side being equal to a constant value,

G

o dot) _r 2 Lty

&) dt m dx +V”‘”(")]“:G'

P(x)
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The time dependent Schroedinger equation is thus converted into two
ordinary differential equations, one concerned only with space and the other
only with time.

Since an exponential function (f(x)=¢") is the only function whose
derivative is the original function itself (i.e., df(x)/dx=de*/dx=¢"), the time
dependent component has a particularly simple solution. The solution is
&)= e " as dg(t)/dt = [-iG/H]¢(t). The Planck relation in quantum me-
chanics is E =i (or w = E/H), where E is the energy of the physical system,
is the quotient of Planck’s constant divided by 2, and w is the angular
frequency (a quantity related to the wave properties of the system). Now
e = cos wt-i sin wt. In mathematics, a real number multiplied by i (i.e., /=1)
is termed imaginary, and as w (the angular frequency) and the variable t (time)
are always real, —i sin wt is a function with only imaginary values. As cos wt
represents a mathematically real function and -isinwt a mathematically
imaginary function, e ™'is an oscillatory function of time and may describe the
variation over time of a complex wave (i.e., a wave having real and imaginary
components) with an angular frequency w. Ase” “'describes the variation over
time of a complex wave with angular frequency w = G/H, and because w =E/#
from the Planck relation, it is reasonable to equate E (the energy of the system)
with G and to conclude that ¢(t) = e */* .

Because G is a constant in the equation ¢(t) =e and because E may be
substituted for G, the conservation of energy may easily be derived due to E
having the same value at any time [for a potential V(x) with only a spatial
dependence and a particle described by a wave function ¥ (x,t) separable into
Y(x)¢(t)]. The conservation of energy may also be extended to wave functions
W (x,t) not separable into ¥(x)¢(t) that may describe the system of interest. As
energy is conserved, the energy eigenfunction ¥(x) will remain the same over
time unless there is an externally induced change to the system.

The comments of Eisberg and Resnick (1974) are very useful in elucidating
the complex nature of ¥ (x,t):

-~ iGy/h

Since a wave function of quantum mechanics is complex, it specifies simultaneously two
real functions, its real part and its imaginary part. ... This is in contrast to a “wave
function” of classical mechanics. For instance, a wave in a string can be specified by one real
function which gives the displacement of various elements of the string at various times.
This classical wave function is not complex because the classical wave equation does not
contain an i since it relates a second time derivative to a second space derivative.

The fact that wave functions are complex functions should not be considered a weak
point of the quantum mechanical theory. Actually, it is a desirable feature because it makes
it immediately apparent that we should not attempt to give to wave functions a physical
existence in the same sense that water waves have a physical existence. The reason is that a
complex quantity cannot be measured by an actual physical instrument. The “real” world
(using the term in its nonmathematical sense) is the world of “real” quantities (using the
term in its mathematical sense).

Therefore, we should not try to answer, or even pose the question: Exactly what is
waving, and what is it waving in? The student will remember that consideration of just such
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questions concerning the nature of electromagnetic waves led the nineteenth century
physicists to the fallacious concept of the ether. As the wave functions are complex, there
is no temptation to make the same mistake again. Instead, it is apparent from the outset
that the wave functions are computational devices which have a significance only in the
context of the Schroedinger theory of which they are a part. (p. 147)

Probability and Stationary States

Born proposed in 1926 that the probability of a particle described by the
wave function ¥ (x,t) being located within an infinitesimal spatial interval
around x1, if a measurement of spatial location were to be taken at a particular
time t1, is derived by taking the product of the wave function multiplied by its
complex conjugate. The complex conjugate of the wave function is the
function resulting from changing the sign (+ or —) of all imaginary terms
of the wave function. Thus the probability may be represented as
P(x,t) dx = ®* (x,t) ¥ (x,t) dx where ¥* (x,t) is the complex conjugate of ¥ (x,t)
and dx represents the infinitesimal interval for which the probability is
determined. Consider the case of a particle in a spatially dependent potential
described by a wave function ¥ (x,t) that can be separated into the space
component ¥ (x) and the time component ¢(t). Now, using ¥ (x,t) = () d(t)
and ¢(t) = e”™"" and substituting, one obtains

Plx,)dx="9"(x,t) W, t)dx=[1"(x) p (O o(x) p(t)]dx =[yr* (x)e “ [ p(x)e” “Jdlx.
Rearranging terms, one finds
[ (e I (x)e” ] dx=v"()(x)e e dx.

ASE iwte-iwt:e iwt—iwtand ase l'wt'imt:e(): 1’ [l/i*(x)e imt][l/l(x)e_ iwt] dX: l/,t(x) tb(x)dx

The verbal meaning of these equations is that in the absence of an externally
induced change in the system, the probabilities corresponding to the possible
locations of the particle, if a measurement were taken, have been shown to be
constant over time. These probabilities do not appear to have a time
dependence, and the state of the system is called a stationary state. It may seem
paradoxical that the probabilities of a moving particle in a spatially dependent
potential being found at various locations can remain constant over time. It
must be remembered, though, that quantum mechanics is a theory that can be
applied to classical mechanical problems but is in no way equivalent to classical
mechanics.

It is to be pointed out that probability amplitudes, represented by ¥ (x,t),
cannot rely on a physical nature for their explanation. This point also applies
to the probabilities derived using probability amplitudes which represent
information about what will happen if position measurements are made.
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Quantum mechanics provides computational or theoretical devices essentially
unrelated to the classically conceived physical world, and quantum mechanics
is supported by empirical data when measurements are taken. The fact that the
probability distributions based on empirical data are in agreement with those
predicted by quantum mechanics suggests that some mechanism exists for the
instantaneous communication of information concerning these distributions
on a computational or theoretical level that is also manifested when actual
measurements are taken. In the absence of some classical physical explanation
(which Eisberg and Resnick clearly note is not possible in quantum mechanics),
how else can potentially widely separated physical events {e.g., the position
measurements of some similarly arranged physical systems such as electrons
after they pass through a double-slit diaphragm) be assured to assume some
particular distribution, a distribution supported by empirical evidence?

Further, spatial location in a one dimensional spatial frame is determined
essentially as distance from the origin of the spatial coordinate axis. As
previously noted, the measurement of length relies essentially on the
simultaneous determination of the spatial coordinates of at least two physical
events; the measurement of length depends on the common time of clocks.
Thus our energy eigenfunction ¥(x) [and ¢ "(x) ¥(x)] actually requires some
basis for simultaneity. ¥(x) is independent only of a time that depends on an
existent with a finite velocity (such as light as it is generally considered in
special relativity) to determine simultaneity and to provide a foundation for
both time and space; /(x) remains the same over all such time. The time at the
core of this function depends on the immediate establishment of simultaneity
and thus on an existent that can transfer information instantaneously. As an
objective physical existent cannot engage in such a transfer due to the velocity
limitation of special relativity, perhaps mental activity is involved in the
immediate establishment of simultaneity.

The Particle Interchange Operator

The term operator in quantum mechanics denotes the performance of a
mathematical operation on one or more functions with this operation
corresponding to a dynamical quantity. Examples of quantum mechanical
operators are Xop and pop corresponding to spatial location and momentum,
respectively. Another example is the Hamiltonian
_h2 2
—— =5 + Vix
m di’ )
that when applied to the energy eigenfunction (x) yields the energy of the
system, E, multiplied by #(x). The form of the resulting equation is the time

H=-—
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independent Schroedinger equation

2 g
Ey(x) =— -211171— d—%gﬁ + V(x) ().
When an operator applied to a function equals a constant multiplied by this
function, we have an eigenvalue equation with the constant being the eigen-
value and the function designated the eigenfunction.

The particle interchange operator in quantum mechanics is concerned with
a most unusual dynamical quantity (Dicke and Wittke, 1960). Consider a box
containing two identical particles, specifically two moving, non-interacting
electrons. In quantum mechanics, a theoretical description of the electrons
must account for the possibility that either of the two wave functions cor-
responding to the two electrons may apply to either electron due to the
uncertainty principle and their identical natures. The description must
account for their indistinguishability. In classical mechanics, each of the
electrons may be identified due to distinguishing characteristics such as dif-
fering trajectories of the particles. Differing trajectories, for example, cannot
be used in quantum mechanics because the uncertainty principle does not
allow for the notion of precisely distinguished trajectories. In fact, a precise
measurement of the position of either particle is accompanied by uncertainty
in momentum and thus in the subsequent position of the electron. Another
way of stating the above point is that in quantum mechanics the wave
functions corresponding to the two identical particles may overlap to some
extent making it difficult to distinguish which wave function corresponds to
which particle (Eisberg and Resnick, 1974).

The composite energy eigenfunction of a system composed of two non-
identical, non-interacting particles may be expressed as the product of the
energy eigenfunctions for each particle, Yrr(xi,. .. ,22) = We(1) Po{2), where
Ye (1) is the eigenfunction for particle 1 evaluated in terms of this particle’s
coordinates x1, y1, 21 and P g(2) is the eigenfunction for particle 2 evaluated at
its coordinates x2, y2, 22. In addition, r¢ and g specify the intrinsic spin
angular momentum states for each of the particles (this momentum being a
solely quantum mechanical construct). The probability density function (i.e.,
the function giving the probability per unit volume of locating particle 1 at
x1, y1, 21 and particle 2 at xs, y2, z2) for this composite eigenfunction is
e (1) ¥g'(2) e (1) ¥g (2). In the case of two identical, non-interacting par-
ticles, though, this formulation of the composite eigenfunction is in general
inadequate. The reason is that the probability density function resulting from
the assignment of each component eigenfunction (its particular mathematical
form) to the other particle [when ., (x1,. . . 22) = ¥o(1)¥e(2)] is not necessarily
the same. The latter composite eigenfunction describes the circumstances
noted for identical particles as well as the former due to the indistinguishability
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of the particles. Where the probability density functions were not the same,
there would exist a means whereby the particles could be distinguished.

The functions that provide a satisfactory basis for describing a system of
identical, non-interacting particles are the antisymmetric and the symmetric
total eigenfunctions. The antisymmetric total eigenfunction, $a, may be
represented as 1/v/ 2 [r(1) (2)— (1) ¥(2)]; the symmetric total eigen-
function, s, may be represented as 1/v/2 [ (1) ¥5(2) + (1) ¥(2)]. These
eigenfunctions satisfy the time independent Schroedinger equation, and as we
shall see, the probability density function resulting from squaring either eigen-
function is unaltered by switching the assignment of the component eigen-
functions to the particles (i.e., by theoretically exchanging the particles). Ele-
mentary particles adequately described by ¥a (e.g., electrons, protons, and
neutrons) are called fermions; bosons are elementary particles described by s
(e.g., mesons). Thus ra and s account for the indistinguishability of non-
interacting, identical particles by incorporating the postulate that either of the
particles may correspond to either of the component eigenfunctions and tak-
ing the sum or difference of the products of the various matchings of these
eigenfunctions and particles. 1/+/ 2is called a normalization factor and is essen-
tially used for calculational convenience.

The particle interchange operator, Pyz, is concerned with the theoretical
exchange of the identical particles. Applying P, to 4 yields

U= 1N 2 (e Do) Tt 1N 2 [hebo()—toDbe1)=-ta.

with the exchange indicated by the arrow. Applying P12 to s yields

Us=1\ 2 W)@+ o] 581N 2 e Dol D= s,

Thus the application of the linear operator P13 to yra or ¥rs yields the respective
function multiplied by -1 or -1: Piapa=-fa and Piaps=is. These two
equations are eigenvalue equations, and +1 and -1 are therefore the eigen-
values of the particle interchange operator. Their squared value is 1, which
indicates that the probability density function resulting from the particle
interchange operation is unchanged.

Experimental work has confirmed that #a, ¥s, and P12 provide for the
correct description of systems of identical particles. Note what is occurring
with these constructs. An action that is theoretical in nature (i.e., the the-
oretical exchange of the particles) is performed requiring the distinguishing of
identical particles that in the physical world are indistinguishable. Further, this
action is not constrained by spatial or temporal limitations in the physical
world; it occurs immediately for particles with any spatial separation and the
resulting composite eigenfunction is independent of a time based on an
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objective physical existent. Specifically, the theoretical action is not
constrained by the velocity limitation of special relativity.

The discussion of the particle interchange operator and the total anti-
symmetric and symmetric eigenfunctions constitutes a case study pointing
toward the general conclusion that the mental action found within the
structure of quantum mechanics is not constrained by restrictions applicable
to the physical world. Rather, this mental action is seen to have its own
parameters, for example, that simultaneity (and thus the time and space)
underlying the energy eigenfunctions relies on the capability to instanta-
neously transfer information. It has been shown that the indistinguishability of
identical, non-interacting particles in the physical world is based on their
distinguishability on an imaginative level and the immediate imaginative inter-
change of these particles to develop eigenfunctions that correctly describe
systems of such particles in the physical world and allow for the correct
application of the particle interchange operator.

As demonstrated by their usefulness in the development of predictions that
have been experimentally confirmed, these features of quantum mechanics
deserve serious consideration by psychologists. The mind that engages in the
mental or imaginative activity found within the structure of quantum me-
chanics is the basis for this activity. Quantum mechanics relies on certain
forms of mental action, and physics provides the most precise sort of publicly
verifiable data indicating the importance of this mental activity in the physical
world.

Conclusion

Various features of special relativity and quantum mechanics have been
explored and found to allow and support the notion that mental activity lies at
the core of the physical world. This notion is consonant with the proposition
that light, in addition to its explicit formulation in special relativity, may be
regarded as an expression of mental activity and capable of instantaneous
transmission of information. Precise and reproducible experimental evidence
supporting quantum mechanics has been shown to constitute evidence for the
important involvement of mental activity in the functioning of the physical
world.
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