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Chaos theory and related things are described by way of differences between tradi-
tional (linear) science and non-traditional (nonlinear) science. Differences described
between linear and nonlinear models of science respectively include the following:
quantitative vs qualitative, analytic vs non-analytic, predictability vs unpredictability,
fundamental scaling vs scaling relations, and superposition vs emergence. Common
themes in non-traditional science are the existence of nonlinearity, scaling relations,
and unpredictability. Data are provided that show that many social and psychological
phenomena can be understood only through nonlinear modeling. It is concluded that
as the old and new views of science coalesce, the newer mathematical tools will help
make understandable the irregular and erratic features of everyday life.

Science is said to proceed on two legs, one of theory (or, loosely, of deduction)
and the other of observation and experiment (or induction). Its progress, how-
ever, is less often a commanding stride than a kind of halting stagger — more
like the path of the wandering minstrel than the straight-ruled trajectory of a
military marching band.

Timothy Ferris
Coming of Age in the Milky May, 1988

A tutorial on the application of chaos and scaling to social and biomedical
phenomena can take any number of forms. At one extreme would be a turgid
collection of discrete and continuous equations bracketing definitions and
proofs on page after lifeless page. The other extreme would be a superficial
popularization emphasizing the most familiar terms such as fractals and
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chaos. Both of these “primers” serve a purpose, but my understanding is that
neither would be satisfactory in the present context. Therefore we are going
to take the high road and avoid excessive mathematical detail by not writing
ideas in mathematical notation, but instead explaining important mathemat-
ical concepts in words. Of course it will not be possible to avoid equations
altogether, and I appeal to the reader to try and meet me halfway in analyz-
ing these equations. | am confident that the reward will be more than worth
the effort.

Our approach to introducing the idea of chaos into the study of the social
and psychological sciences shall be to examine the underlying assumptions of
the physical sciences. This backdoor approach is taken because the physical
sciences in general, and physics in particular, form the paradigm for the
social and psychological sciences. Thus if we understand the weaknesses of
the paradigm, then the arguments traditionally used to develop mathemati-
cal models in the latter case may not be so compelling. The basis of physics is
the traditional linear perspective of Newton and his lineage, and we propose
to discuss the challenges to that foundation made by the nonlinear perspec-
tive of Poincaré and his intellectual progeny. We follow a procedure that has
had some success in the past and collect the conventional wisdom of the
physical sciences into an assortment of traditional truths which over time
have become so obvious that they are all but impossible to call into question.
Thus to determine which strategies would be the most effective in the fur-
ther development of theories of complex phenomena requires that we take
cognizance of these mostly unconscious truths. In Table 1 we list five tradi-
tional truths, not necessarily in the order of their importance, along with a
counterpoising set of five non-traditional truths which by and large seem to
erode the foundations of the physical sciences and in so doing forces us to
rethink the basis of theory in the social and psychological sciences. Here we
are not interested in specific social models except insofar as they provide a
context in which to understand large data sets.

The importance of chaos in the understanding of complex phenomena
becomes apparent in the discussion of the changes in our scientific perspec-
tive. Chaos theory is used here as code for the rather intimidating phrase,
low-dimensional, deterministic, nonlinear, dynamical systems theory and unques-
tionably frees the social and life scientist from the straight jacket of nineteenth
century physics, without abandoning such basic concepts as determinism. On
the other hand chaos broadens our concerns from the smooth structures and
parallel lines of Euclidean geometry to the scale-free, self-similar forms of
fractal geometry. Also rather than the self-serving predictions of traditional
theory, we offer a mathematics to describe the counter-intuitive, unpre-
dictable evolution of complex systems. It is the property of chaos to be just as
crazy as complex phenomena in the social and psychological sciences that
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Table 1
Traditional and Non-traditional Truths of Science
Traditional Truths Non-Traditional Truths
1. Physical theories are and 1. Qualitative theories ate as
should be quantitative. important, and sometimes more

important than quantitative ones.

2. Natural phenomena can by and 2. Many phenomena are singular in
large be represented by analytic character and cannot be represented
functions. by analytic functions (fractals).

3. Natural phenomena have 3. Natural phenomena do not
fundamental scales. necessarily have fundamental

scales and may be described
by scaling relations.

4. The evolution of natural 4. The evolution of many
phenomena can be predicted phenomena, although derivable
from the equations of motion. from dynamical equations, are

not necessarily predictable (chaos).

5. Most phenomena satisfy the 5. Most phenomena violate the
principle of superposition. principle of superposition (emergence).

make it such an attractive descriptor. That is to say that the scale-free, frac-
tal nature of nonlinear deterministic dynamics (chaos) often leads to unex-
pected and sometimes unacceptable changes in time series thereby
mimicking similar complex dynamics in the social and natural sciences, for
example, sudden changes in a person’s behavior related to a small, seemingly
unimportant incident.

Therefore a large part of our attention in this tutorial shall be on data sets
that demonstrate the scaling nature of social and psychological phenomena
and discussions of how these data challenge the traditional paradigm. We
show both the continuous and discrete logistic equation, the former having a
significant pedigree in the social sciences, whereas the latter has a remark-
able, if shorter, history in the mathematical sciences. The continuous logistic
equation is shown to describe the spreading of information and innovations
in society, and to result in regular saturation phenomena. The discrete logis-
tic equation on the other hand is seen to result in regular, periodic and scale-
free chaotic phenomena. The discrete dynamical equations in general are
infinitely richer in the type of time-dependence they can and do describe.
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We emphasize that everything we shall be discussing herein is based on the
idea that all interesting natural and psychological phenomena are fundamen-
tally not linear, or said differently, all interesting phenomena are nonlinear.
This cannot be overstated because most concepts in science are either
implicitly or explicitly linear in character. It is the assumption of linearity
that underlies the traditional truths contained in Table 1, and it is the exis-
tence of nonlinearities that undercuts their truth value. One property of lin-
earity that is rarely, if ever, observed in biomedical social or psychological
phenomena is that of proportionality: the response of a system is propor-
tional to the stimulus. A nonlinear system, on the other hand, is one for
which the size of the input does not determine the size of the output. Such
fundamental concepts as threshold and saturation are intrinsically nonlinear
and cannot be approximated by linear functions. This is the case even when
a transformation of the data makes it amenable to a linear description, such
as the common method of taking logarithms of the data. The transformation
itself does not make the process linear nor does it give any additional insight
into actual system dynamics. For a linear system containing many factors the
total response of the system is proportional to the sum of the individual
responses of each of the separate factors. This is the property of independence.
For a linear system there always exists a representation in which the factors
are mutually independent. However, this is not true in general and the inter-
dependence of the factors is a manifestation of nonlinearity. Finally it should
be emphasized that the notion of an emergent property in which “the whole is
greater than the sum of its parts” contradicts traditional linear theory. It is
only with nonlinear phenomena that a property not explicit in the underly-
ing elements can emerge through the interaction of these elements. The
total response of a nonlinear system is always a complex function of the
input, and for a chaotic system this is a very sensitive function. By sensitive
we mean that a minuscule change in the input can have a catastrophic change in the
output.

We emphasize at the outset that we draw no conclusions herein regarding
particular models, nor do we develop a theory of nonlinear social or psycho-
logical interactions. So what do we have to say that might be of value?
Simply that the strategies for modeling complex social and psychological
phenomena that have been used in the past, insofar as they either implicitly
or explicitly rely on linear assumptions, are overly restrictive, and chaos may
well provided a fresh, new approach that is more faithful to reality.

Truth or Consequences

We have separated what we consider to be the underlying assumptions of
the physical sciences into five traditional truths. We may debate about the
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independence of these truths and whether or not the list is complete, but let
us for the sake of argument tentatively accept them. We believe the list is a
reasonable one and what is significant about it for us here is how the nonlin-
ear interactions in the dynamics of natural and social phenomena call each
and every item on the list into question. A similar exercise could be carried
out with any other such list with similar results. An appreciation of how
nonlinear concepts in dynamics undermine our cherished preconceptions
takes us a long way down the road to understanding complex phenomena,
the time series we measure to represent them and their statistics. Much of
our failure to understand is more a matter of misunderstanding due to the
inapplicability of unspoken assumptions than it is a matter of not being able
to conceptualize what is true about a phenomenon. This is in part the reason
we examine the traditional method of modeling simple social and biomedical
phenomena: to be able to point out the apparent inconsistencies with the
methods used to model complex natural phenomena.

Qualitative Versus Quantitative Science

The first and perhaps foremost of the traditional truths is that scientific
theories are (and should be) quantitative. As Lord Rutherford phrased it:
“All science is either physics or stamp collecting.” The viewpoint was clari-
fied by René Thom (1975) who pointed out that by the end of the seven-
teenth century there were two main groups in physics, those that followed
the physics of Descartes and those that followed the dictates of Newton:

Descartes, with his vortices, his hooked atoms, and the like, explained everything and
calculated nothing. Newton, with the inverse square law of gravitation, calculated
everything and explained nothing. History has endorsed Newton and relegated the
Cartesian constructions to the domain of curious speculation. (p. 763)

Thus this first traditional truth takes the alternate form that if it is not
quantitative it is not scientific. This visceral belief has molded the science of
the twentieth century, in particular those emerging disciplines relating to life
and society have by and large accepted the need for quantitative measures. It
is not that this perspective is wrong, but rather that it is overly restrictive. [t
does not enable the psychologist to understand the aesthetic judgment we
make in viewing a painting or listening to music; nor does it assist the politi-
cian in reaching a decision concerning the quality of life of his/her con-
stituency. For these latter considerations we need to examine the qualitative
as well as the quantitative aspects of the world. For this reason the first of the
non-traditional truths is that scientific theories should be qualitative as well
as quantitative. The most venerable proponent of this view in recent times
was D’Arcy Thompson (1917/1963), whose work in part motivated the
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development of catastrophe theory by Thom (1975). Their interest in bio-
logical morphogenesis stimulated a new way of thinking about change — not
the smooth, continuous quantitative change familiar in many physical phe-
nomena, but the abrupt, discontinuous, qualitative change familiar from the
experience of “getting a joke,” “having an insight,” or the bursting of a
bubble. ~ '

Many if not most interesting phenomena in nature and society involve dis-
continuities, sudden changes, and it is only relatively recently in the history
of science that we have available the appropriate mathematical disciplines to
describe the behavior of such changes. Catastrophe theory and topology are
two examples of the approaches that stand in sharp contrast to the vast
majority of available techniques which were developed in the physical sci-
ences for the quantitative study of continuous behavior. Catastrophe theory
has a mathematically rigorous foundation in topology and is qualitative
rather than quantitative in nature, which is to say it deals with the forms of
things and not with their magnitudes. In topology an orange and the earth
are the same insofar as they are both spheres and can only be distinguished
by their radii. Further, all shapes that can be achieved by smoothly deform-
ing a sphere are topologically indistinguishable. Thus a sphere and a bowl are
topologically the same, but a cup with a handle is different since the handle
has a hole in it. However, a cup and a doughnut, or any other one-holed
shape are topologically equivalent. Here the no-hole, one-hole, two-hole,
and so forth aspect of things determines their qualitative nature. This theory
recognizes that many, if not most, interesting phenomena in nature and soci-
ety involve discontinuities. An example of a possible missed application of
this theory was anticipating the fall of the Berlin Wall. To my knowledge no
political scientist foresaw this abrupt change in the world politique, but it
was to describe just this kind of sudden bifurcation that catastrophe theory
was developed. Catastrophes are abrupt changes arising as a sudden response
of a system to a smooth change in external conditions. It is more general
than the term bifurcation in that the latter is a forking of various entities
resulting from changes in the parameters on which a system depends.
Unfortunately when catastrophe theory was first introduced a number of its
more zealous supporters made unrealistic claims for what it could accomplish
and when these claims were not realized its subsequent reputation was tar-
nished. Among the various applications of catastrophe theory that were of
limited or no success were models of the activity of the brain and mental dis-
orders, prison uprisings, the behavior of investors on the stock exchange, and
the influence of alcohol on drivers (see, for example, Arnold [1986]).

Topology is but one example of a rigorous mathematical discipline whose
applications to the physical, biological and social sciences emphasize the
qualitative over the quantitative. Another is the bifurcation behavior of
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deterministic nonlinear dynamical equations. A bifurcation is a qualitative
change in the solution to a differential or difference equation obtained
through the variation of a control parameter. For example, certain systems
manifest periodic motion, a behavior that repeats itself after a fixed interval
of time, such as the sun coming up each morning, changing a control param-
eter: the process generates a sequence of sub harmonic bifurcation’s in which
the period of the motion doubles, doubles again and again and so on (see, for
example, West and Deering [1995]). Eventually the motion, after becoming
more and more complex with each bifurcation, winds up being irregular in
time, as we discuss below. This irregular behavior has been used to model
such apparently random phenomena as the transfer of disease in a population
during an epidemic, oscillating chemical reactions and the clear air turbu-
lence experienced by airline travelers. The periodic behavior of the final
states has suggested a new paradigm for the unpredictable behavior of com-
plex systems, the phenomenon of chaos (see West [1990] for a review of the
applications of these ideas to biomedical phenomena and Ott [1993] for a
rigorous mathematical treatment). Of course we have only mentioned one of
the many possible routes to chaos in the above example, that being the sub
harmonic bifurcation route. Another'is an intermittency transition to chaos,
where a system is regular for a parameter below a critical value. Above this
value the system has long time intervals in which its behavior is periodic
(regular), but this apparently regular behavior is intermittently interrupted
by a finite-duration burst during which the dynamics are qualitatively differ-
ent. The time intervals between bursts are apparently random. As the param-
eter value becomes significantly larger than the critical value the bursts
become more and more frequent, until finally only the bursts remain. There
are three types of intermittency transitions. One is called a Hopf-bifurcation
and was used by Freeman (1994) to describe the onset of low-dimensional
chaos in the brain. These arguments suggest the form of the first non-tradi-
tional truth: qualitative descriptions can be as important, if not more important,
than quantitative descriptions in science.

Analytic Functions and Fractals

The second fundamental truth spans the macroscopic and microscopic
worlds of physical science and maintains that physical observables and their
relationships are represented by analytic functions. Since the time of
Lagrange (1759) it has been accepted that celestial mechanics and physics
are described by smooth, continuous, and unique functions. This belief is
part of the infrastructure of the physical sciences because the evolution of
physical processes are modeled by systems of dynamical equations and the
solutions to such equations are thought to be continuous and differentiable
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on all but a finite number of points, that is to say, the solutions are analytic
functions. We see here one of the major assumptions of the physical sciences,
that being that understanding comes from prediction and description, not
from the identification of teleological causation. Thus, science is concerned
with the how of phenomena not with the why. Galileo, condensed the activ-
ity of science into the following three tenets:

(1) description is the pursuit of science, not causation;
(2) science should follow mathematical, that is, deductive reasoning;
(3) first principles come from experiments, not the intellect.

This summary of Galileo’s scientific philosophy set the stage for Newton who
was born the year Galileo died, 1642. Newton embraced the philosophy of
Galileo and in so doing inferred mathematical premises from experiments
rather than from physical hypothesis. This approach of proceeding from the
data to the model is no less viable today than it was over three hundred years
ago and we follow it herein.

According to the above, the purpose of modeling is to obtain a simple
description that captures the essential features of the process being investi-
gated. In physics one recalls in the static case such expressions as Ohm’s law
E=IR where E is the voltage measured across a resistance R through which a
current I is flowing, and the perfect gas law PV=NkT where P is the pressure
of a gas contained in a volume V at a temperature T, and N is the number of
particles with k being a known constant. These are the kinds of expressions
sought in other areas of science as well. But such simple laws are usually not
available outside the physical sciences. On the other hand, one does encounter
relations of the form Y=aM?, allometric growth laws, that appear in biology,
botany, sociology and other branches of science. The allometric equations in
physiology, say, associate Y with any physiological, morphological or ecologi-
cal variable and M, in most cases, is the body mass and o and 3 are constants
determined by the data. The exponent B is usually not a rational number,
which is to say that it cannot be written as the ratio of integers, see for exam-
ple, Calder (1984) and/or MacDonald (1983). Herein we put these power
laws into a somewhat broader context.

In 1738, Daniel Bernoulli expressed the significance of inverse power laws,
or 1/f-phenomena, when he devised a quantity called the utility function. He
was interested in characterizing the social behavior of individuals, and the
utility function was intended to describe an individual’s social well-being. He
reasoned that a change in some unspecified quantity f, denoted by Af, has
different meanings to different persons depending on how much they already
possess. For example if f denotes the level of a person’s wealth then the
greater { the less important is any particular incremental change in that
wealth Af. Suppose you and I both invest money in the stock market, you
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invest $100 and I invest $10. If we both make $10 profit, who is the happier?
You that made 10% profit or me that made 100% profit? The utility function
specifies that individuals respond to percentage changes, not to absolute
changes, so the larger response corresponds to the larger Afff. In other words,
I'am happier than you even though we both made the same amount of money,
because my percentage change was greater than yours. We shall have reason
to use this observation repeatedly.

Although such a simple model as the utility function does not provide a
complete characterization of an individual’s response, it does seem to capture
an essential aspect of that response, that being its scale-free nature. Every-
thing we see, smell, taste, and otherwise experience is in a continual process
of change. But the changes in the world are not experienced linearly, which
is to say that our responses to the changes are not in direct proportion to the
change. In the last century the physiologist E.H. Weber studied the sensa-
tions of sound and touch and experimentally determined that people do not
respond to the absolute level of stimulation but rather to the percentage
change in stimulation. Shortly thereafter the physicist Gustav Fechner
founded a new school of experimental psychology called psychophysics. He
determined the domain of validity of Weber’s findings and renamed it the
Weber—Fechner law (Fechner, 1860). If the change in frequency Af is the
stimulation, then we respond to Af/f rather than to Af itself. This early work
supported the intuition of Bernoulli even though its basis was biological
rather than social.

Stevens (1957) argued that the logarithm law of Weber and Fechner
should be replaced by the power law

Y(X) = aXP (1)

for constants o and B with & >0; X is the intensity of the applied stimulus
and Y(X) is the perceived (nonlinear) response. This idea dates back to
Plateau in 1872, and the equation has the same form as the allometric
growth law. Consider the subjective loudness of a sound relative to a refer-
ence sound. Suppose the reference sound is given a number and a sound per-
ceived as half as loud is given half the value of the reference number. The
graph of a sequence of these numbers versus the actual intensity of the sound
is shown in Figure 1. The straight line on this log-log graph clearly indicates
a power law of the form (equation 1), which is to say that a logarithmic
transformation of the data makes the response linear in the new variable. All
sensory systems seem to perform this transformation to achieve range com-
pression. It should be noted however, that the extremes of the sigmoidal
shape seen in the data, the threshold and the saturation, cannot be lin-
earized. A number of stimuli, including brightness, taste, smell, temperature,
vibration, duration, pressure, pain, and electrical shock to name just a few
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have all been used to determine the empirical values of ot and f for different
modalities (see Roberts [1979] for a complete review of theory and experi-
ments). It is not only in psychophysics that these laws exist, however. They
appear in biology, economics, sociology as well as in other areas of study.
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Figure 1: Magnitude estimation judgments in log-log coordinates, fitted with a straight line
of slope 0.3. From “The Relation between Category and Magnitude Scales of Loudness,”
by E. Galanter and S. Messick, 1961, Psychological Review, 68, p. 366. © 1961, American
Psychological Association. Adapted with permission.

E Auerbach published an empirical law of urban concentration in 1923.
He found that the product of a city’s population and its rank in a given coun-
try produce a constant. If the cities in a country are ordered from largest to
smallest in population, a city’s rank is its ordinal position in the sequence. In
this way he obtained a hyperbolic curve by plotting population versus rank,
or more dramatically, he obtained a straight line by plotting the logarithm of
one quantity versus the logarithm of the other. Auerbach’s Law has the form
NR%=constant, with @=1 here N is the population of the city and R is its
rank. Note that this equation is of the form (equation 1) with a negative
exponent. If one plots the data for the 100 largest cities in the United States
from around 1920 we obtain ¢¢=0.93 rather than o=1.
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Our earlier example of individual response had to do with our reaction to
the change in our wealth. One of the earliest quantitative investigations of
the distribution wealth was made by the engineer turned sociologist, Vilfredo
Pareto, published 1897. He collected statistics on the income and wealth of
individuals in many western countries at various times in history. He sought
to understand how wealth was distributed in western societies and from this
understanding to determine how such societies operate. In Figure 2 we depict
the distribution of income in the United States in 1918 on log-log graph
paper. A straight line with a negative slope indicates an inverse power law,
with the index (being given by the slope of the line, see equation 1). This is
the so-called Pareto’s Law of income distribution. Pareto believed that o had
the universal value of 1.5 for western societies, but this turned out not to be
the case. If we normalize the data in this figure differently, for example,
dividing by the total population, then we can interpret this curve as a proba-
bility distribution function, since we have a relative frequency for the
number of people in a given income interval. The curve abruptly stops at
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Figure 2: Pareto’s Law: Frequency distribution of incomes in the United States, 1918. The
value of 1.5 for the Pareto index is not as universal as he had hoped.
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$600, the so-called “wolf point,” that being the point at which the wolf is at
the door. In 1918 the income of $600/year was the minimum income level
necessary to maintain life with a modicum of dignity. These inverse power
laws are the result of multiplicative amplification processes that have been
called the principle of statistical leverage. This means that people in the highest
income domain operate in a way different from most individuals in the
income distribution. While most people are paid an hourly wage, the wealthy
frequently accumulate their extra wealth by means of some amplification
process: that process varying from case to case. Perhaps one of the most
common lower level modes of amplification is for an individual to organize
an operation with others working for him/her so that his/her income is
amplified through the efforts of others (a modest sized business, for example)
[see Montroll and Badger (1974) or West and Deering (1995) for a more
complete discussion]. Income distributions such as this one were found for
many western societies by Pareto as well as subsequent investigators, inde-
pendently of their particular social organizing principles.

In a quite different social context Lotka (1926) observed another inverse
power-law distribution. Lotka was interested in the number of papers pub-
lished by scientists in a given year. If the fraction of the total number of sci-
entists versus the number of papers published, in the order of the least
frequent to most frequent, is graphed on log-log graph paper, the distribution
is an inverse power law in the number of papers published and o in (1) is
approximately 2, compare Figure 3. From this figure we see that for every 100
scientists who publish a single paper in a given period of time, there are 25
scientists who publish two, 11 with three, and so on. Putting this in cumula-
tive form, we find there is one in five scientists who produce five papers or
more; one in ten who produce at least ten papers, and so on. It is interesting
to note that although there is no guarantee that a scientist who only pub-
lishes a few papers will not achieve international recognition, or that a sci-
entist who publishes a great deal will achieve prominence, there is in fact a
strong correlation between the number of publications and a scientist’s repu-
tation (de Sola Price, 1963). Note that the number of papers published has
been leveraged in a way completely equivalent to that used for income. The
publication of scientific papers is leveraged through the use of graduate stu-
dents and postdoctoral researchers under the direction of one or more senior
scientists. The latter receive the advantage of co-authorship on multiple
publications; more than they could have produced working alone. The co-
workers likewise benefit from the guidance of the seasoned veteran.

As a final example of these hyperbolic (inverse power law) relations we
draw from the arena of biological evolution and the work of Willis (1922).
Willis argued that the spatial area occupied by a biological species is directly
proportional to the age of the species, so the area is a measure of age.
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Figure 3: Lotka’s Law: The number of authors publishing exactly n papers, as a function of n.
The open circles represent data taken from the first index volume of the abridged Philosophical
Transactions of the Royal Society of London (seventeenth and early eighteenth centuries), the
filled circles those from the 1907-16 decennial index of Chemical Abstracts. The straight line
shows the exact inverse-square law of Lotka. All data are reduced to a basis of exactly 100
authors publishing but a single paper. From “The Frequency Distribution of Scientific
Activity,” by A.J. Lotka, 1926, Journal of the Washington Academy of Science, 16, p. 317. © 1926,
Washington Academy of Sciences. Reprinted with permission.

Leaving the details of his theory aside, Willis collected data on various natu-
ral families of plants and animals and graphed the numbers of genera as ordi-
nate and the number of species in each genus as abscissa. The relation
between the number and size of genera of all flowering plants is a hyperbolic
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distribution, see for example Figure 4. The monotypic genera, with one
species each, are always the most numerous; the ditypics, with two species
each, are next in rank, genera with higher numbers of species becoming suc-
cessively fewer. The relation is most apparent when displayed on log-log
graph paper, where we obtain a straight line with a slope —B. The inverse
power law was found to be true of all flowering plants, certain families of
beetles as well as for other groupings of plants and animals. The basis for
Willis’ Law was argued to be the result of mutations (genetic variation), and
we shall support this argument somewhat later in a more general context when
we determine the possible underlying reason for inverse power laws in all
these complex phenomena.
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log (Number of species)
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Figure 4: Willis' Law: Relation between number and size of genera of chrysomelid beetles com-
pared with all flowering plants. From Age and Area: A Study in Geographical Distribution and
Origin of Species (p. 242), by ].C. Willis. © 1922, Cambridge University Press, Cambridge,
England. Reprinted with permission.

Recall that each of the above inverse power laws is given as an example of
a complex social or biological phenomena for which the simple analytic
functions of the physical sciences are inadequate, but which can be lin-
earized by logarithmic transformation. However, there has always been a sub-
stantial number of natural phenomena that could not be linearized by
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logarithmic or any other transformation or described by analytic functions.
The brain is not a sphere, trees are not cones, the transition of water to ice
does not happen continuously, hiccupping and shivering are not smooth
dynamical processes, and on and on. In phenomena such as these, scaling is
crucial in the description of the underlying process. In fact the inverse power
law is a direct consequence of scaling. The existence of scaling relations,
implies that complex systems cannot be described by analytic functions.
Modern scaling arguments result from the fact that these systems do not
have a fundamental scale.

From this discussion about scales we see the importance of the form of the
equations of motion used to describe the time evolution of the system of
interest. Simple analytic functions are the solutions to differential equations
with well-behaved boundary and/or initial conditions. The smooth, continu-
ous behavior of the solutions seems to be anticipated by the forms of the
equations of motion. It has been recognized that the time dependence of
many discontinuous phenomena as well as the structure of many fractal geo-
metrical forms are determined by recursive algorithms rather than by differ-
ential equations. We shall find that discrete equations, also called mappings,
are a very powerful strategy for modeling complex processes that cannot be
represented by analytic functions, but are fractal processes that do not possess a
characteristic scale. Thus the second non-traditional truth is: many phenom-
ena are singular in character and cannot be represented by analytic functions.

Scaling Relations

The third traditional truth is that physical systems can be characterized by
fundamental scales such as those of length and time. Such scales provide the
meaning of the fundamental units in the physical sciences without which
measurements could not be made and quantification would not be possible.
On the other hand the new ideas introduced above require that we reinter-
pret existing data sets. For example, if we consider an irregular time series
our first impression is the lack of organization associated with the random
fluctuations. If we focus our attention on a small interval and magnify the
fluctuations, there are two kinds of results that we might encounter. The first
kind of result is that in the magnified region of the time series the curve
becomes smooth and no more irregularity is observed. That is what happens
if the time series can be represented with an analytic function. There is
always a smallest scale below which there is no further variability. The
second kind of result is that no matter how much we magnify the curve,
more and more structure is uncovered. What is observed on one scale is
repeated again and again on adjacent scales, cascading upward and down-
ward, never becoming smooth, always revealing more and more structure.
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Thus we have wiggles within wiggles within wiggles. Mathematically, there is
no limiting smallest scale size and therefore there is no scale at which the
variations in the function {data) subsides. Of course in the real world there is
always a smallest scale, however if this cascade covers sufficiently many
decades of scale it is useful to treat the natural function as if it shared all the
properties of the mathematical function including the lack of a fundamental
scale. This idea came into sharp focus using real data in the classic work of
Lewis Fry Richardson.

Richardson was a Quaker and an ambulance driver in “the war to end all
wars.” He was also quite interested in the reasons for the causes of wars. In
this pursuit, since border disputes are often used as a reason for conflict, he
became interested in how we determine the borders between countries and
the length of coastlines. He estimated the length of a coastline (border) by
using a pair of calipers opened a fixed amount and then “walking” them
along a border in an atlas. He found that the measured length of the border
changed as the opening of the calipers became smaller. If 7 is the length of the
ruler (caliper opening) used and L(r) the length of the coastline, Richardson
(1961) obtained the estimated length of an irregular coastline to be

L(r)=Lgr!-D (2)

where L, is the measured length of the coastline when the ruler is of unit
length. The constant D is calculated from the slope of the straight line on a
log-log plot of the data: logL(r)=logL,+(1-D)log . For a classical smooth
line the dimension D equals one, and L(r) becomes a constant independent
of r, that is, the coefficient of the size of the ruler vanishes when D=1, For an
irregular coastline it was found that D>1, the data for the total length of
coastlines and boundaries fall on straight lines with slopes giving non-integer
dimensions. From these data it is found, for example, that D is approximately
1.6 for the coastline of Britain and 1.0 for a circle, as expected (see Figure 5).
It is also found that the length of a curve described by equation 2 diverges; it
becomes infinitely long as the size of the ruler goes to zero for such irregular
curves, since {1-D)<0. Such a curve was called a fractal by Mandelbrot (1977).
From equation 2 we observe that if we scale the ruler size by a constant 4,
then we obtain L(Ar)=yAL(r), where of course §=1-D. This scaling relation
is also observed in each of the examples given above: cities, wealth, biology,
and so on. The scaling observed in fractals is seen in all the above power laws
and inverse power-law distributions. It is precisely this scaling behavior that
is manifest by the dimension, D, being non-integer in equation 2, or in equa-
tion 1 for that matter. Classical scaling principles are based on the notion
that the underlying process is uniform, filling an interval in a smooth, con-
tinuous fashion. The new principle is one that can generate richly detailed,
heterogeneous, but self-similar (or self-affine) structure on all scales. Thus
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Figure 5: Richardson’s Law: The logarithm of the length of coastlines as a function of the loga-
rithm of the yardstick length shows an inverse power-law behavior. From “The Problem of
Contiguity: An Appendix to Statistics of Deadly Quarrels,” by L.E Richardson, 1961, General
Systems Yearbook, 6, p. 169. © 1961, International Society of Systems Sciences. Reprinted
with permission.

the structure of many systems are determined by the scale of the measuting
instrument, and such things as the length of a curve are a function of the
unit of measure, for example, the length of a fractal curve depends on how it
is measured. The third non-traditional truth is therefore that natural phenom-
ena do not necessarily have fundamental scales and may be described by scaling
relations.

Nonlinear Deterministic Equations and Chaos

The fourth traditional truth is that since the time evolution of physical
systems is determined by systems of deterministic dynamical equations, if
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one completely specifies the initial state of the system then the solution to
the dynamic equations uniquely determines the final state of that physical
system. Thus the final state can be predicted from a given initial state using
the dynamical equations. Until the last decade ot so this view prompted most
scientists to casually assert that the evolution of these observables are abso-
lutely predictable. While it is true that the Newtonian model is valid, it does
not imply absolute predictability for arbitrarily long times. The particular
results with which we are concerned are the periodic (irregular) solutions
mentioned earlier. These solutions are manifestations of the deterministic
randomness (chaos) that can arise from intrinsic nonlinear interactions in
the dynamical equations [see, for example, Crutchfield, Farmer, Packard, and
Shaw (1986)]. Since chaotic processes are irregular, they have limited pre-
dictability and call into question each of the first four traditional truths, that
is, whether the important aspects of complex phenomena are that they be
quantitative, analytic, possess fundamental scales and are predictable.

Here we examine how a deterministic mechanism, for example, a set of
deterministic rate equations, can give rise to erratic time series that satisfy all
the conditions of randomness. We argue that there exists a deep relation
between the idea of a fractal dimension and chaos. Chaotic time series are
found to have a fractal dimension in precisely the same way an inverse
power-law spectrum for a random time series has a fractal dimension. For this
reason it is often not clear whether or not a given random fractal time series
is generated by a low-dimensional deterministic nonlinear dynamical process
ot by colored noise; the latter being noise (a random time series arising from
the interaction of the system of interest with the infinite environment) with
an inverse power-law spectrum. This particular difficulty is beyond the scope
of the present discussion and arises in the practical context of data analysis
(Bassingthwaighte, Liebovitch, and West, 1994). That being said, it is quite
important that we distinguish between chaos and noise in a given experi-
mental time series, because how we subsequently analyze the data and inter-
pret the underlying process are determined by this judgment. A colored noise
signal generally implies that we look for a static fractal structure that is mod-
ulating the noisy signal in such a way as to give rise to the fractal dimension.
If, however, the signal is chaotic, then the fractal dimension is related to the
underlying nonlinear dynamical process and we have some hope of con-
structing a dynamical description of that underlying process.

The phase space for a dynamical system consists of coordinate axes defined
by the independent variables for the system. Engineers refer to this as the
“state space,” owing to the use of the term “phase” to denote shifts in time
between oscillators of the same frequency such as in brain wave (EEG) data.
Each point in the phase space corresponds to a particular set of values of the
dynamical variables that uniquely define the state of the system. This point
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moves about in phase space as the system evolves and leaves a trail that is
indexed by the time. This trail is referred to as the orbit or trajectory of the
system. In general a phase space orbit completely describes the evolution of a
system through time. Each choice of an initial state produces 4 different tra-
jectory. If however there is a limiting set in phase space to which all trajecto-
ries are drawn as time tends to infinity, we say that the system dynamics are
described by an attractor. The attractor is the geometrical limiting set on
which all the trajectories eventually find themselves, that is, the set of points
in phase space to which all the trajectories are attracted. After an initial
transient period that depends on the initial state the orbit blends with the
attractor. Attractors come in many shapes and sizes, but they all have the
property of occupying a finite volume of phase space. As the system evolves
it sweeps through the attractor, going through some regions rather rapidly
and through others quite slowly, but always staying on the attractor after the
initial transient. A discussion of these properties in a-biomedical context is
given by West (1990).

Whether or not the system is chaotic is determined by how two initially
nearby trajectories cover the attractor over time. As Poincaré stated, a small
change in the initial separation of any two trajectories may produce an enor-
mous change in their final separation (sensitive dependence on initial condi-
tions) — when this occurs the attractor is said to be “strange.” The two
nearby orbits separate exponentially in time which is to say the distance
between them increases geometrically in each unit of time. The question is
how this exponential separation is accomplished on a strange attractor of
finite size. The answer to this question has to do with the layered structure
necessary for an attractor to be chaotic. The transverse cross section of the
layered structure of a strange attractor is a fractal. This property of a strange
attractor relates the geometry of fractals to the dynamics of chaos.

Rossler (1976) described chaos as resulting from the geometrical opera-
tions of stretching and folding, often exemplified by the Baker’s transforma-
tion. In this analogy the baker takes some dough and rolls it out on a floured
bread board. When the rolled dough is thin enough the baker folds it back
onto itself and rolls it out again. The map that carries out this operation is
the Baker’s transform. This process of rolling and folding is repeated again
and again. Arnold gave a memorable image of this process using the image of
the head of a cat [compare Arnold and Avez (1968)]. In Figure 6 a cross sec-
tion of the square of dough is shown with the head of a cat inscribed. After
the first rolling operation the head is flattened and stretched, that is, it
becomes half its height and twice its length, as shown to the right at the top
of the figure. It is then cut in the center and the segment of dough to the
right is set above the one on the left to reform the initial square. The opera-
tion is repeated again and we see that at the bottom the cat’s head is now
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Figure 6: Arnold’s cat being decimated by the stretching and folding operation that accom-
panies the dynamics of a chaotic attractor. After only two operations the cat's head is
unrecognizable. Compare with Ergodic Problems in Classical Mechanics (p. 9), by V.I. Arnold
and A. Avez, 1968, New York: Benjamins.

embedded in four layers of dough. Even after two of these transformations
the cat’s head is clearly decimated. After twenty stages of transformation the
head will be distributed across a million layers of dough — not easy to iden-
tify. As so charmingly put by Ekeland (1988): “Arnold’s cat has melted into
the square, gradually disappearing from sight like the Cheshire Cat in
Wonderland” (p. 51). The above argument of Réssler turned out to be
generic. Two initially nearby orbits cannot rapidly separate forever on a
finite attractor, therefore the attractor must eventually fold over onto itself.
Once folded the attractor is again stretched and folded again. This process is
repeated over and over, yielding an attractor structure with an infinite
number of layers to be traversed by various trajectories. The infinite richness
of the attractor structure affords ample opportunity for trajectories to diverge
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and follow increasingly different paths. The finite size of the attractor insures
that these diverging trajectories will eventually pass close to one another
again, albeit on different layers of the attractor. One can visualize these
orbits on a chaotic attractor as being shuffled by this process, much as a deck
of cards is shuffled by a dealer. Thus the randomness of the chaotic orbits is a
consequence of this shuffling process. This process of stretching and folding
creates folds within folds ad infinitum, resulting in the attractor having a
fractal structure in phase space. The essential fractal feature of interest here
is that the greater the magnification of a region of the attractor, the greater
the degree of detail that is revealed, that is, one observes that there is no
characteristic scale for the attractor and therefore none in the resulting time
series given by a trajectory traversing the attractor. It should be emphasized
that although this mathematical definition of an attractor is rigorous, it may
not be the appropriate descriptor of the phenomenon of interest. For exam-
ple, such a concept would only be approximate in dealing with certain
aspects of the brain which is neither an autonomous nor stationary system.
Such real phenomena would require generalizations of the notions of trajec-
tories, attractors and evolution (Ott, 1993). The fourth non-traditional truth,
then is: nonlinear, deterministic equations of motion whether discrete or continu-
ous do not necessarily have predictable final states due to the sensitivity of the solu-
tions to initial conditions.

Principle of Superposition

A principle that perhaps falls just short of a fundamental truth is that of
superposition, but even so it is sufficiently pervasive that we treat it as the
fifth traditional truth. It is worthwhile to note that the principle of superpo-
sition not only influenced development in the physical sciences and later
dominated the thinking of scientists studying natural phenomena, but it also
influenced our interpretation of the behavior of society and the nature of life
itself. The principle can be stated as follows: a complex process can be decom-
posed into constituent elements, each element can be studied individually and
reassembled to understand the whole. In this view of the world, all phenomena
can be understood by treating the effects of nonlinearities as perturbations,
that is, nonlinearities are always assumed to be weak effects. This would also
suggest that the dominant behavior of a system is determined by its linear
behavior and that the nonlinearity can make quantitative but not qualitative
changes in the system’s evolution. This was certainly the assumption of
nearly all of nineteenth century physics. In this view the whole can never be
more than the sum of its parts. There can be no emergent properties. If a
property is not contained in the linear elements, reductionistically obtained,
it cannot emerge from their superposition. The term microreductionistic is
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used by Causey (1969) to denote “an explanation of the behavior of a struc-
tured whole in terms of the laws governing the parts of the whole” (p. 230).
Without denigrating the obvious success of this dictum in science and in our
technological society we must also face its limitations when dealing with
complex phenomena. The existence of chaos argues against the universal
application of superposition and the microreductionistic ideas. Kellert
(1993) contends that this does not argue against the validity of the philo-
sophical doctrine of reductionism, however, which states that all properties
of a system are reducible to the properties of its parts. He states: “Chaos
theory gives no example of ‘holistic’ properties which could serve as coun-
terexamples to such a claim” (p. 90). A segment of the scientific community
disagrees with this assertion, so let me point out that the statistical distribu-
tion resulting from a chaotic time series is a property of the system as a whole
and cannot be traced back to any of its isolated constituent parts. For exam-
ple, it is well known that two bodies acting under a mutual gravitational
force give rise to a solvable set of equations using Newton’s laws. However,
three bodies interacting under the same force yield a set of equations that are
not solvable in the traditional sense and indeed yield chaotic solutions. Thus
a complex (deterministic, nonlinear and dynamical) system is irreducible and
is chaotic in general. Chaos itself is a consequence of the stability of the
entire system and the structure of the attractor upon which the system
dynamics unfold, not of any component part or collection or parts, so [
would maintain that chaos undercuts the foundations of the philosophical
doctrine of reductionism. Understanding the process as a whole cannot be
achieved through a knowledge of the decomposed elements. The evolution
of such systems cannot be described by perturbation theory. Therefore the
fifth non-traditional truth is that most complex phenomena do not lend them-
selves to the principle of superposition.

Summary

Table 1 summarizes the change in perspective that has been developing in
the physical sciences in the past two decades, and is more compatible with
the view of the world the life scientists and psychologists have held all along.
The cool, predictable, almost sterile view of natural phenomena held by the
classical physical scientists is being overwhelmed in the acceptance of the
unpredictable, ever-changing phenomena found in the social and psychologi-
cal sciences. As the old and new views coalesce the modern mathematical
tools help to make understandable the irregular and erratic features of every-
day life.
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The Value of Chaos in the Social and Life Sciences

A final question with which to end this overview of chaos is: What is the
value of chaos in the social and psychological sciences? Conrad (1986) has
suggested five functional roles that chaos might play in biological systems:
(a) search, (b) defense, (¢) maintenance, (d) cross-level effects and (e) dissi-

" pation of disturbances. Each of these roles is found to have a sociological or
psychological analog.

In the first function, that of search, chaos acts to enhance exploratory
activity, independently of whether one is dealing with predators searching
for prey, the brain devising strategies for accessing memory, or a individual
seeking gratification in a social context.

In the second function, that of defense, the diversity of behavior is used to
avoid predators rather than to explore the environment. An organism that
moves about in an unpredictable way is certainly more difficult to ensnare
than one that moves regularly in circles or along a straight line. This may
also apply to the speeches of politicians.

A third possible function for chaos is the prevention of entrainment,
which is to say, the maintaining of the process. It has been argued here and
elsewhere that a complex system whose individual elements act more inde-
pendently are more adaptable than one in which the separate elements are
tightly locked.

A fourth function, that of cross-level effects, has to do with micro and
macroscopic effects. The micro is at the level of the interaction of individu-
als and the macro is at the level of societal forces analogous to Darwin’s
mechanism of variation and selection. The variability due to the creativity of
the individual may well lead to evolution of new social entities, for example,
books, public libraries and computers to name a few.

Dissipation of disturbances is a fifth possible function of chaos. This has
been known for some time in the physical sciences (see, for example, Trefén,
Grigolini, and, West [1992]). If the erratic behavior of a social system is pro-
duced by a strange attractor on which all trajectories are functionally equiva-
lent, the sensitivity to the initial conditions is the most effective mechanism
for dissipating disturbances, since the disturbance is so soon mixed with pre-
viously existing orbits. Thus labor strikes and other conflicts are absorbed by
the erratic unfolding of social progress.
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