195

©2008 The Institute of Mind and Behavior, Inc.

The Journal of Mind and Behaviar

Winter and Spring 2008, Volume 29, Numbers 1 and 2
Pages 195-216

ISSN 0271-0137

The Evolution of a Cognitive Architecture for Emotional

Learning from a Modulon Structured Genome

Stevo Bozinovski
and
Liljana Bozinovska

South Carolina State University

The paper addresses a central problem in evolutionary biology and cognitive science;
evolution of a neural based learning phenotype from a structured genotype. It describes
morphogenesis of a neural network-based cognitive system, starting from a single geno-
type having a modulon control structure. It further shows how such a system, denoted
as GALA architecture, growing its own recurrent axon connections, can further devel-
op into various structures capable of learning in different learning modes, such as advice
learning, reinforcement learning, and emotion learning. The paper particularly consid-
ers the emotion learning systems and their motivational structure. A simulation exper-
iment is provided to illustrate the theoretical issues discussed.

Keywords: modulon-based genotypes, motivation—emotion structures,
evolutionary cognitive systems

In this work we propose a model for the development (morphogenesis) of a
cognitive system capable of emotion learning, commencing from a structured
genome. This work is a research effort in evolutionary biology and is related
to other efforts in that direction (e.g., Bull, 1997; Cangelosi, Parisi, and Nolfi,
1994; Eggenberger, 1997; Reil, 1999; Vaario, Ogata, and Shimohara, 1997). It

This research work has been supported in part by the NSF EPSCoR grant Nr EPS 0447660 exten-
sion 2005=701 to the South Carolina State University, the Pl being the first author. The authors
would like to thank the Guest Editor for improving an earlier draft of the paper. Requests for
reprints should be sent either to Stevo Bozinovski, Ph.D., Al/Robotics/Biocybernetics Laboratory,
Depattment of Mathematics and Computer Science, South Carolina State University, Orangeburg,
South Carolina 29117, or to Liljana Bozinovska, M.D. Ph.D., Neuroscience and Electrophysiology
Laboratory, Department of Biological and Physical Sciences, South Carolina State University,
Orangeburg, South Carolina 29117. Email: shozinovski@scsu.edu or bozinov@scsu.edu

196 BOZINOVSKI AND BOZINOVSKA

is also a contribution to work on designing plastic evolvable systems based on
neural networks (Elman, 1993; Gruau and Whitley, 1993; Nolfi, Miglino, and
Parisi, 1994). The paper is a continuation of our previous efforts to develop a
sound theory of consequence driven systems (Bozinovski, 1995). Relation of
this theory to other research in emotion is discussed elsewhere (Bozinovski,
2003). In this paper, we will firstly describe the basic concepts of our theory,
and then we will introduce new concepts to derive a morphogenetic mecha-
nism for developing axon reconfigurable neural architectures that are capable
of learning.

The Framework: Consequence Driven Systems Theory

Consequence driven systems are systems that are capable of building the
concept of a consequence (for example, a concept of a response of the behav-
foral environment to a previously performed agent behavior). Consequence
driven systems theory is an attempt to recognize, understand, and formalize
this and related issues. Such systems need to be based on a model of represen-
tative architecture that will ground notions such as motivation, emotion,
memory, intelligence, disposition, anticipation, curiosity, confidence, and
behavior, among others. Furthermore, in order to be realistic, such systems
need to be based on an architecture that can be evolved from a genotype that
contains a message from the genetic environment.

Origin

Consequence driven systems theory originated in an early reinforcement
learning research effort to solve the “assignment-of-credit” problem using a
neural network. This effort was undertaken in 1981 within the Adaptive
Networks (ANW) Group at the Computer and Information Science
(COINS) Department of the University of Massachusetts, Amherst. Two
instances of the assignment-of-credit problem were considered: the maze-
learning problem and the pole-balancing learning problem. Two learning
architectures were proposed as candidates for solving those problems: the
Actor/Critic (A/C) architecture and the Crossbar Adaptive Array (CAA)
architecture (Figure 1).

Although both architectures were designed to solve the same problem, the
A[C architecture effort was challenged by the mazes from animal learning
experiments where there are several neutral states and there is only one
rewarding state (food). In contrast, the CAA architecture effort was chal-
lenged by the mazes from the VAX/VMS 1981 computer game Dungeons and
Dragons, where there is a single goal state but many rewarding and punish-
ment states along the way. So, from the very beginning the CAA effort adopt-

EVOLVING COGNITION FROM A MODULON GENOME 197

ed the concept of dealing with pleasant and unpleasant states, feelings and
emotions, and genotype predispositions.

behavioral environment

genetic environment

Figure 1: The A/C architecture (left) and the CAA architecture.

As Figure 1 shows, the obvious difference is that the A/C architecture needs
two identical memory structures, V and W, to compute the internal reinforce-
ment and the action, while CAA architecture for both computations uses
only one memory structure, W, which is the same size as one of the A/C mem-
ory structures. The most important difference, however, is the design philoso-
phy for reinforcement. In contrast to AJC architecture, which uses an extet-
nal reinforcement 7 to compute internal reinforcement ", CAA architecture
uses genetically-introduced feelings and emotions. Crossbar Adaptive Array
introduces a genetic environment and the concept of a genome string which
defines the initial state, W, of the memory. The initial genome defines desir-
able states of the environment. Finally, by introducing the concept of state
evaluation, CAA is able to develop a learning scheme using emotional value
v, and does not require any external reinforcement.

Simulation experiments based on these architectures were carried out with-
in the ANW group. The CAA approach proved more efficient and in fact was
the only approach reporting a solution of the credit assignment problem in
1981 (Bozinovski, 1981a, 1981b, 1982). The A/C architecture reported its
solution in 1983 (Barto, Sutton, and Anderson, 1983). The original CAA idea
of having one memory structure for crosshar computation of both state values
and action values was later implemented in reinforcement learning systems
such as the Q-learning system {Barto, Sutton, and Watkins, 1990; Watkins,
1989). Q-learning (Watkins, 1989) uses exactly the same memory structure as

198 BOZINOVSKI AND BOZINOVSKA

the CAA memory structure W, and denotes it as the Q-table. The main differ-
ence between the CAA and Q-learning approaches lies in the use of external
reinforcement r. The CAA synaptic plasticity (learning) rule is in the form
w'ij =w, + ', while the Q-learning rule is in the form w'i}- =(]- oc)wij + o T+ yo')
where w; is the crosshar value (or Q-value) for action i in state J, ¥'), is antici-
pated emotion in state k, r is the immediate external reinforcement in state j
after performing action i, ¥ is a discount factor, and « is a forgetting parameter.
In the CAA approach there is no external reinforcement: the parameter r could
be considered only as an internal cost, -¢;, of performing action i, in a synaptic
plasticity rule in the form W= w;; + o'y - ¢; (Bozinovski, 1995). Dyna architecture
(Sutton, 1990) extends the concept of a crossbar adaptive array, introducing
more arrays in order to build and use a model of the environment. We denote this
extension as a “crossbar adaptive tensor (CAT) architecture” (Bozinovski, 1995).

The CAA approach introduced systems that can learn without external
reinforcement — all the external reinforcement plasticity rules are classified
into the supervised learning class of rules. We introduced a taxonomy of
learning systems (Bozinovski and Bozinovska, 2001) which divides learning
into supervised and unsupervised. Supervised learning contains advice learn-
ing and reinforcement learning, while unsupervised learning contains emo-
tion learning and similarity learning. In supervised learning systems, a super-
visor {e.g., teacher or other environmental feature) can give external rein-
forcement and/or advice as to how the agent should chose future actions. In
unsupervised (self-supervised) systems, which have no external teacher of any
kind, the agent has to develop an internal state evaluation system in order to
compute an emotion. Other researchers, such as Gadanho (1999), recognize
the distinction between external reinforcement learning as supervised leamn-
ing and internal reinforcement learning as self-supervised learning. A kind of
unsupervised learning can also be observed in agents that use some measure of
similarity in tasks of adaptive classification (clustering) of input situations or
data. Reinforcement learning (e.g., Barto, 1997) can be considered as a part
of the supervised learning class (see also Peshkin and Savova, 2002).

Main Concepts of the Theory
Three Environments: Behavioral, Genetic, Internal

Consequence driven systems theory assumes that agents should be consid-
ered as three-environment systems. Behavioral environment is where the agents
express their behavior. Agents have their inner environment where they build
models of the behavioral environment. Some agents are able to build models
of themselves as well. Agents are also connected to a genetic environment from
which they receive initial conditions for existing in the behavioral environ-

EVOLVING COGNITION FROM A MODULON GENOME 199

ment. The initial knowledge transferred through the imported genome proper-
ly reflects, in the value system of the agent, the dangerous situations poten-
tially encountered by agents in their behavioral environment. It is assumed
that all agents import some genomes at the time of their creation, but not all
of them are able to export their genomes after a learning period. This concept
can be applied for biological as well as for non-biological agents. However, for
non-biological agents, instead of genetic environment we use the concept of
a generic environment. For example, a BIOS-ROM in computer systems is an
example of an imported generome for a non-biological agent.

Understanding Interactions by Parallel Programming

In consequence driven systems theory, parallel programming is understood
as a way of thinking about interactions. Parallel programming was used as a way
of carrying out the experiments of pole balancing learning, where the envi-
ronment (pole balancing dynamics) runs on one VAX/VMS terminal, while
the CAA controller runs on another terminal (Bozinovski, 1981b). To the
best of our knowledge, this was the first parallel programming application in
neural network research. We will present a parallel version of the CAA
agent—environment interaction below.

Time as Input/Output Concept: GALA Architecture

The theory emphasizes that an agent’s architecture should be able to understand
temporal concepts in order to be able to self-organize in an environment. In an
agent’s architecture the past tense is associated with the evaluation of its pre-
vious performance, the present tense is associated with the concept of emo-
tion that the agent computes toward the current situation (or the current
state), and the future tense is associated with the advice the agent will acquire
for its future behavior.

The Crossbar Adaptive Array Architecture

Crosshar Adaptive Array architecture (Figure 1 above and Figure 2 below)
is an instance architecture, evolved from the GALA architecture as an emo-
tion learning agent. In a crossbar fashion, this architecture computes both state
evaluations (emotions) and behavior evaluations. It contains four basic mod-
ules: crossbar learning memory, state evaluator, a behavior selector with a set
of behaviors to select from, and a personality module providing personality
parameters (Bozinovski and Bozinovska, 2001). In its basic routine, the CAA
architecture first computes the emotion of being in the current state, and
then, using a feedback loop, it computes the possibility of choosing at a future

200 BOZINOVSKI AND BOZINOVSKA

time the behavior to which the current state is a consequence. The state eval-
uation module computes the global emotional state of the agent and broad-
casts it to the memory. Using some kind of behavioral algebra, the behavior
computation module initially performs a curiosity driven default behavior, but
is gradually replaced by a learned one.

behavioral environment

situation # behavior

Crosshar learned
Z Adaptive behavior Behavior
Memory L Computation
| . . .
* curiosity driven
behavior

State patience Personality

emotion Evaluator | g——— Parameters

genetic environment

Figure 2: Crossbar adaptive array architecture.

The fourth module defines specific personality parameters of a particular agent,
such as searching curiosity, emotional tolerance (patience), etc. It also pro-
vides some physiological parameters, such as urge signals. The urge signals pro-
duce behaviors that interrupt the behavior algebra- of the agent. The fourth
module is also engaged in computing export genomes of the CAA architecture.

Evaluate States, Backpropagate Emotions, Remember Behaviors

The consequence driven systems theory introduced the principle of remem-
bering only the behavior evaluations, not the state evaluations. The behaviors are
evaluated by their consequence states. Behavior evaluations are the only val-
ues stored. There is no need to store the state values, since they can be com-
puted from the behavior values. The importance of this principle was empha-
sized by Watkins (1989) who established relations between dynamic program-
ming (Bellman, 1957) and delayed reinforcement learning.

EVOLVING COGNITION FROM A MODULON GENOME 201

What are Motivations, What are Emotions: Motivational Graphs as Internal
Mental Representations

1n the consequence driven system theory emotions and motivations are basic
concepts of cognitive representations of an agent. One distinguishes between
motivations and emotions such that motivations are associated to behaviors,
while emotional values are associated to states of an agent. Below we describe rep-
resentational concepts for motivations and emotions: motivational graphs
and motivational polynomials.

1. Motivational graphs. A motivational graph (or motivational net) is a rep-
resentational concept for the value system of an agent (Bozinovski, 2003).
Environmental situations are represented as emotionally valued nodes. The
emotional value can be represented in different ways (for example, by using
numerical values) but stylizations of facial expressions are preferred whenev-
er possible (Bozinovski, 1982). Transitions between states are behaviors. The
term “behavior” covers both the simple actions and also the possible complex
network of actions. Some states are not reachable by the behavioral repertoire
of the agent. The emotional value is given to a state either by the genetic
mechanisin, or by learning, after the agent visits that state. A state can be a
neutral one, and can change its emotional value after being visited. There are
different concepts of what an agent learns in an environment. It can learn the
whole graph, like a cognitive map, or it can learn only a policy (the set of
states and behaviors associated to those states). In the case of policy learning,
the environment itself provides the actual map (the interconnection network
between the states). The motivational graph concept includes the possibility
that the environment is non-deterministic, or stochastic, in the sense that
after executing the behavior, say B2 in state S1, it is not guaranteed that the
next state will be the anticipated state S2. It is possible that after executing
B2 the environment will present a state different than SZ. However, it is
assumed that the cost for performing behavior B2 has already been incurred
after executing a behavior, even though the anticipated state is not obtained.

2. Motivational polynomials. For description of a motivational graph we use
constructs which we call motivational polynomials. We use a kind of hiero-
glyph as symbol for expressing emotions and motivations (for example, the
hieroglyph ©). Each state is assigned an emotional value of being there. A state
represents the environmental situation that the agent is currently in. Current
state is defined by some color, for example grey.

A situation can have features. A set of features associated with a situation

can be for example {x, 52, ﬂ, @, =, =% ﬁ, O G -~ LA
situation can be represented by a monomial, such as S1, or aly, or by a poly-
nomial of its features, such as gﬁ + ‘€ Each state is assigned an attractor,

something that can possibly attract the agent toward that state. An attractor

202 BOZINOVSKI AND BOZINOVSKA

can be represented by a motivational polynomial, example being 1@ + T + <3 + 8,
or by a monomial, examples being 8 and . If there is no distinguished
attractor, the state can be evaluated by @ or left blank. It is assumed that there
are also negative attractors (repellers). Examples of repeller monomials are
¢, 9 O, ™, 2. Depending on the attractor, some situations can be goal
situations. Each state has a repertoire of behaviors that can be executed from
that state. Behaviors can be denoted by symbols B1, B2, B3 The nota-
tion B2/S1 means “behavior B2 given state S1.” Behaviors can also be repre-
sented by emotional monomials such as @, —%.., @6, ¥, or as a polynomi-
al,eg., B+ R,

Each behavior is assigned an anticipated purpose. The purpose for a behavior
can be the set of attractors associated with the anticipated consequence state.
Each behavior is also assigned a cost for executing that behavior. The cost can
summarize a behavioral effort. The cost can be represented in cost units, an
example being (-units. However each agent can have an attitude, a feeling
toward a cost that can be measured in emotional units. Each behavior is
assigned a motivation. The notation 9 (B2/S1) means motivation for per-
forming B2 in S1. It is assumed that motivations are functions of anticipa-
tions, which in turn are functions of attractors and repellers.

Each state is assumed to have a possibility to execute a behavior, which we
denote as an urge. The term “urge” is adopted from Loehlin (1968), but we use
it to represent an urgent interruptive behavior used to service a need of the
agent. In contrast to motivated behavior, urge behavior is a result of energy
supplying and metabolism balance needs. It is usually assumed that the urge
produces a circular path in a motivational graph, but the model allows other
paths produced by urges. As special types of motivations, urges are usually rep-
resented by monomials like 43, &, <3, &, & . Usually a monomial like &
is not considered an urge, but the model includes that possibility too.

Genome Driven Morphogenesis:
From a Genome to a Neural Architecture

The GALA Modulon

We propose that a hierarchically structured genome is needed for development
of a modular neural structure. More specifically, we propose a modulon-level
hierarchy of genetic control structures and two types of genes: value encoding
genes and function encoding genes. For our construction of a reconfigurable
neural controller we assume a genotype consisting of genes, operons, and reg-
ulons, co-regulated by a single modulon. Here we will describe the GALA
modulon, the genome structure out of which we will develop our neural

GALA architecture. The GALA modulon (Figure 3) consists of the following

EVOLVING COGNITION FROM A MODULON GENOME 203

co-regulated genetic structures: neur-regulon, learn-gene, eval-gene, clone-
gene, and struct-operon.

GALA modulon

neur regulon

env operon Struct operon

l equipot I eval | | learn [|c|0ne | | behav | I emot

Figure 3: A one-chromosome genome as genotype for a neural network.

Neur-regulon consists of an operon and a gene, denoted as env operon and
equipot gene. The env operon is the environment encoding operon. It expresses
m genes [wy;, Wy - - - Wy - - - \Wg,,] which encode m synaptic weights of the
phenotype neural cell. The value encoding genes {woj} encode a motivation—
emotion system of the phenotype agent. Equipot gene encodes the neural
threshold which is assumed to be a function of the encoded weights. The
equipot gene can be denoted as f(wg;, Wy, - - - Wop - - “Woy,) since it is a func-
tion of the env operon. Learn-gene encodes the synaptic plasticity rule for the
synaptic weights, can be denoted as [h{w, u, x, r)], where w is a synaptic weight,
x is the synaptic input, and u and r are advice input and performance evaluation
input, respectively. Eval-gene encodes a function, glw o, Wy, - - - W, - - - W)
The number n is specified by the GALA modulon, as the number of neuron
cell clones produced by the co-regulated neur-regulon. It is assumed that the
functions f(), g() and h() are just specified in the regulon; the regulon does
not actually compute them. Clone-gene controls the parallel programming
feature of the morphogenesis of the neural GALA architecture. It specifies
number of copies that will be cloned of the phenotypes produced by the neur-
regulon and eval-gene. Struct-operon contains all the structural information as
how to assemble the whole GALA structure. Among others, it contains two
genes, behav-gene and emot-gene. The behav-gene encodes a neuron that
selects the output behavior, and the emot-gene selects the global emotion of
the whole system. Not all the genes are expressed in the various phenotype
organisms that could be generated by this genome. The struct-operon contains
additional genes that decide, depending on the environment conditions, whether
some genes will not be activated.

Let us note that more consistent with standard genetics naming convention
(Brown, 1998) would be the following description of the GALA modulon
structure: 4gal_312 (3neu2W_P (ZenvW_W (synW,, . . .,synWn), equP),
eval, cloN, leaR, 2sttAT(behA, emoT))). The leading numbers show the
level of the control structure, 4 being modulon, 3 being regulon, 2 being oper-
on: genes have no leading number. However in the text below we will use the
naming we introduced in Figure 3.

204 BOZINOVSKI AND BOZINOVSKA

Neural Cytogenesis

When the GALA modulon undergoes its cytogenesis process it firstly acti-
vates the neur-regulon, which in turn activates the env-operon. The resulting
phenotype is a neural cell that contains the expressed m synaptic weights and
has m synaptic inputs that are associated with m situations from the behav-
ioral environment. While the GALA modulon merely specifies the output
function, the phenotype neuron actually computes it. In computation of the
neural output, the neuron first computes its (summary postsynaptic) neural
potential s, = Z; wy X, where wy; is the influence (weight) of the j-th
synapse in computing the s;. The equipot-gene specifies that the neural
threshold is indeed equal to the neural potential, i.e., 8, = s;. Having that, the
output signal computation is simple. Using maximum potential principle, we
have:

y; =0;y; = L only if s; = max (s,6,) {1]

The expression of the learn-gene gives the synaptic plasticity rule. The synap-
tic plasticity mechanism is defined as

w'1j=w”+r1xju1 [2]

This means that the neuron learns by a three-factor correlation rule, specify-
ing that the past performance r and the current situation x and the future
behavior advice u are needed in order for a neuron to learn how to perform
later in situation Xy if it is encountered again.

Neural Tissue Genesis

Next step is obtaining a neural tissue. The first neuron clones itself and the
struct-operon defines a neural structure consisting of two neurons. The
obtained structure grows collateral connections and connects the threshold
values making them equipotential (or isopotential). An assumption of this
theory is that the neural networks that perform certain tasks have a common
threshold value. The computation of the common threshold value can be per-
formed in various ways, and we chose the maximum potential principle. The
common threshold is computed as:

0 = max (6,, 6,) = max (s;,s,) 3]

Now, since 8 has a value of the greater of 5, and s,, the only neuron that will
fire is the one with greater value of its neural potential. Thus, the equipoten-
tial neural network has an inherent maximum selector mechanism. In neural net-
works theory the maximum selector principle is usually implemented as synaptic

EVOLVING COGNITION FROM A MODULON GENOME 205

lateral inhibition network, so called “winner take all” mechanism, which becomes
rather complex in the case of many thousands of neurons. We argue that the neu-
ral equipotential (equithreshold) mechanism is simpler yet biologically plausible.
For the two-neuron network, the synaptic plasticity rule is:

w‘ij=wij+uixjr,fori=1,2andj=1,...,m [4]

It is easy to generalize for a network of n neurons, obtained after n times
cloning of the initial neural cell. The resulting neural structure will be able to
implement the maximum selector principle according to the relation

y, =l onlyifs, =0 [5]

where @ is the common equipotential threshold computed as 8 = max {6,, 6,, .. .,0,
. 0 }. Also for the n-neuron network, the synaptic plasticity rule is:

w'ij=wij+uixjr, fori=1,..,nandj=1,...,m [6]

Note that we assume that the system learns from the performance evaluation
given to the whole structure (the organism as a whole) and not to a single
neuron.

Ewolving the GALA Architecture

Now let us consider cytogenesis of other neurons produced by the eval-gene.
The eval-gene produces a neuron e, that monitors the synaptic weights Wy
that are in the j-th column of the memory matrix. Various functions can be
implemented for the e. neurons, for example, the maximum function and the
sum {softmax) function. To be consistent with all the functions in the same
regulon, let us chose the maximum function, denoting ¢; = max {w,\;:j}, where
signifies all the weights associated with the j-th environmental situation. For
the output of the system, the equithreshold selector will chose the maximum
function, such that e = max {e.} where # denotes all the neurons produced by
the eval-gene.

Expressing the Struct-operon: Adding Output Modulation Neurons

The struct-operon will add one neuron that connects outputs from all the
behavior-computing genes and one neuron that will collect information from
all emotion-computing genes. Figure 4 shows the whole neural architecture
including the output neurons that are the result of expressing the behav and
emot genes of the struct operon. For sake of clarity, it shows only the first, i-th,
and the n-th neuron produced from the newr regulon — the neurons in-
between are not shown. Note that synapses x; . . . x,, apply to all the neurons.

206 BOZINOVSKI AND BOZINOVSKA

>

kS
[
>
<

<—
<._
‘__
<

Wi W Wy WYim K 0y
\ \ \ \

TR \ > \
1
Y
Ui —::I Wi Wi Yij Wim (ei
. Uy > W) W, Wi W (en curiosity
g \ P P
Y

Y
‘> o S d >
& @ Cm

Figure 4: The genome driven morphogenesis of the GALA architecture.

Adding output neurons to the GALA neural structure enables greater flexibil-
ity in some applications and in understanding the agent’s personality. Neurons
can perform a kind of behavioral algebra and emotional algebra, respectively.
They can perform various functions such as summing function, maximum
function, and multiplexing function. As an example, the behavior-computing
neuron can enable execution of other, curiosity-driven behavior, and is not
limited to learned behaviors. Also, the emotion-computing neuron can accept
influences from other neural systems before sending a signal about the emo-
tional state of the system to the outside world and/or back to the learning
structure of the agent.

Axon Reconnection Driven Morphogenesis:
Evolving Learning Mechanisms

In this section we will consider further development of the GALA architec-
ture using an axon growing mechanism. Recall the GALA architecture
description as GALA(in: x, u, r; out: v, e) where x is current situation, r is past
performance evaluation, u is future advice, vy is current behavior, and e is cur-
rent emotion. The same architecture can perform three types of learning:
advice learning, reinforcement learning, and emotion learning by rewiring its
axons and reducing inputs from the environment.

EVOLVING COGNITION FROM A MODULON GENOME 207

Advice Learning Agents

An advice learning agent is connected to the environment with all inputs
and outputs, GALA(in: x, u, r; out: vy, ¢). The learning rule for this agent is

w'ij=wij+r'x'ju'i, fori=1,...,nandj=1,...,m [7]

where given a situation x, the supervisor advises u, as to what behavior should
be chosen in that situation. The advice is only given if the evaluation of a pre-
vious behavior is r = 1, which means that the advice is needed. If a previous
behavior was correct, then r = O means that the advice is not needed. Note
that some supervised learning systems do not include the parameter r in the
learning process. However, we are only concerned with consequence driven
teaching, where the teaching trial is applied as a consequence of the previous
behavior of the learner, so the parameter r is needed. The notation w'. = wy +
7' x]u that we use is equivalent to the notation w}(t) w, (L 1)+ r(t)x(t)u(t)
which means that in the advice learning procedure all the three learmng vari-
ables are present in the same learning step. Let us note that the emotion out-

put in this case is not necessary to be computed, so the architecture can be
described as GALA(in: x, u, r; out: y).

Reinforcement Learning Agents

A reinforcement learning agent can be obtained by growing recurrent axon
collaterals and connecting the current behavior output to the behavior advice
input, given in the following description GALA(in: x, r; out: v, e; recurrent: u
< v). Now the agent inputs from the environment are only the situation and
performance evaluation input. The behavior advice is computed internally: it
is actually a previous behavior if it was evaluated as desirable. The learning
rule now is:

w'ij=wij+r'xjyi,fori=1, ..onandj=1,...,m [8]

The notation w'; = w, + Xy, is equivalent to notation w, (t) = w, (t-l) +
7(t)x (e=1)y,(t-1). It is important to note that reinforcement learmng mtroduces
a shxft in the time scale. The reinforcement is given by the environment as a
consequence of previously taking the action i in the situation j. Reinforcement
7 is received from an external teacher (e.g., from the environment itself) as a
scalar judgment rather than as advice judging the previous behavior of the
agent. Let us also note that it is not necessary to compute the emotion, so the
description can be GALA(in: x, u, r; out: y; recurrent: u < y).

208 BOZINOVSKI AND BOZINOVSKA

Emotion Learning Agents

The emotion learning agent can be obtained from a reinforcement learning
agent by growing axon collaterals from the current emotional value output to
the past performance evaluation input, GALA(in: x; out: y, e; recurrent: u < v,
r < ¢}. The learning rule for this agent is:

w'ij =w; + U'kxjyi, fori=1,...,nandj=1,...,m [9]

I

where o', = e(x'}) is the emotional value of the consequence situation ', which
in turn is result of performing behavior i in the situation j. Another way of
writing the above equation is wij(t)= wij(t—l) + e(xk(t))xj(t-l)yi(t—l). If we con-
sider the cost per action, then we have:

w'ij= wy - oyt fu’kxjyi, fori=1,...,nandj=1,...,m [10]

where ¢; is a cost for performing action i. If it is understood that x, is a conse-
quence of v, in X and we consider v, and x; as Boolean variables, the above
equations can be written simply as:

w‘ij = wy + v [11]

and

w'y = wy - ot oYy 112]

We denote the two equations above as the “CAA learning rule” and the “benefit—
cost CAA learning rule” respectively. In both of the learning rules the only
connection to the environment is the situation x,. No reinforcement from the
environment is received. Both the variables o', and ¢, are computed as inter-
nal variables.

The advice learning and reinforcement learning agents do not necessarily
require emotional output from the agent. They can learn from the advice and
reinforcements they receive from the environment. For these types of agents
there is no need for expressing the eval-gene of the GALA regulon. The emo-
tional learning agent, in contrast, needs an internal emotional system in order
to value the consequence of its behavior, and the eval-gene is essential for
developing an emotional learning phenotype.

Measuring Units for Motivation and Emotion

We will now address the use of units for measuring emotion and motivation,
since these are required in our simulation experiments.

Motivation function, 0 (i/j). Represents the motivation for performing the
behavior i given situation j. Its co-domain could be the ordered set, (2, &,

EVOLVING COGNITION FROM A MODULON GENOME 209

S, =, ¥,29, 3", ..). Measuring units are ¥-units. An example of an expres-
sion with that function is

¥ (=g =2Y [13]

Emotion function ©(j). Represents the evaluation of desirability of being in
state j. The emotion function has its domain in the set of situations and its co-
domain in some set of emotions. Usually a ternary co-domain set ©, 0, ®)
is sufficient for use of this function in motivational nets. However, in some
cases it is useful to measure the emotion in emotional units, like 20, 3©, etc.
An example of an expression with that function is

O(+ g+ 3 + @) = 40 [14]

Negative emotions are represented in ®-units. A neutral value of an emotion
is denoted as O (empty circle). States j can be represented by the situation the
agent is in, or by features of that situation (as shown above), or by some com-
bination of the situation features and the internal features of the agent.

The anticipated emotion function, or motivation gain, ©'(k), represents the
emotion of being in state k, which is a state on the way toward a goal. Since
it is an expected emotion rather than a felt emotion, it is measured in moti-
vational units, ¥. This emotion is signaled as an emotion signal in the process
of learning.

Cost function, or motivation loss, (). Represents the attitude associated
with the anticipated effort of performing i. It is measured in (negative) ¥-units.
Examples of expressions with that function are

O () =-39 [15]
O ke) = -00

Having all these definitions, we now define the motivation learning function,

W(i/j) as

' (i/j) =i/} + Ok - D) {16}
or shorter, in C** notation:
¥ (i/j)+= ©'(k) - ©3) [17]

Using the concept of motivational polynomials we can write several instances
of this generic equation, examples being:

Wi (b/s)) += O'(s,)) - ®©(b) [18]

¥ (Fih) - Ok - O(R)

210 BOZINOVSKI AND BOZINOVSKA

Connecting the Genome to the Behavioral Environment:
Motivational Structure of the Agent

Recall that the env-operon is the environment encoding operon. The value
encoding genes {woj} of this operon encode an emotion toward the respective
environmental situations. Some of those genes represent desirable situations,
some represent undesirable ones and some do not carry information about
desirability. As an example, let the env-operon be a part of the genome inher-
ited in an environment that contains nine relevant situations for the consid-
ered agent. The genes are represented as vector

This means that the inherited genome points out that for this particular agent
the situation S3 is undesirable while S6 is desirable, which defines non-modi-
fiable weighted synapses in the phenotype neuron. The agent (species) carry-
ing that genetic information will be attracted by situation S6 while avoiding
situation S3. Note that in the process of cytogenesis of the initial neural cell,
all the emotional values of the synapses with fixed weights are reproduced as
well. When a species driven by its neural controller appears (“is born”) in an
environment, it carries fixed weight synapses but also synapses generated from
neutral genes of the env-operon. The fixed weight synapses represent informa-
tion obtained from the genetic environment that reflects the states of the
behavioral environment. The neutral genes will define modifiable synapses,
indicated by =. These synapses are modified as the result of a learning process.
The modifiable synapses represent motivational confidences, or strengths. The
element w; 1s the motivation strength of performing behavior Bi in the situa-
tion Sj. Using motivational symbols we can write it as 9 (Bi/ Sj). Those moti-
vational values can also be interpreted as tendencies, intentions, dispositions,
or as other notions representing motives to perform some behavior.

After the learning process has occurred, the initial neural controller might
have a mature structure as shown in the following emotion learning matrix:

situation [ST S2 S3 S4 S5 S6 S7 S8 S9]

~ £ 8%]- behavior Bl
2 2 =]-> behavior B2
Z 2 =]~ behavior B3

u

OO0

1st neuron [= 2 B ¢
Ind neuron [= 2y ®
3rd neuron [= =~ ®

<€
<

situation

evaluation [O © ® © © © 0 B® ©

This matrix contains one situation vector, three neuron vectors and a situa-
tion evaluation vector. In this example all the motivations are neutral in sit-

EVOLVING COGNITION FROM A MODULON GENOME 211

uation S1, and the emotion in that state is neutral. In situation S2, there is a
potential danger of performing B1, but it is compensated by two prior experi-
ences showing that there is a path from this state toward a goal state. Situation
S3 is defined genetically as a dangerous state in the behavioral environment. In
situation S4 the species has learned that B1/S4 should be avoided and B3 /54
should be tried; if the behavior selection algorithm is a maximum-seeking one,
this state is emotionally desirable. Situation S5 is a typical example of a Jearn-
ing process: it has been learned that B3/85. Situation S6 is predefined genet-
ically as a desirable state; in the behavioral environment it possibly contains an
attractor. However, that is not represented in the genome: what is represented
is only the emotional value of being in that environmental situation. Situation
S7 can be evaluated differently depending upon the emotion computation
algorithm. If the selection algorithm seeks a maximum, it can be evaluated as
neutral. If, however, the behavior selection algorithm guarantees no-risk using
the maximum principle (no risk from the stochasticity of the outcome), this
situation might be evaluated as desirable. Situation S8 occurs after the learn-
ing is evaluated as a situation with no promising outcome. Evaluation of situ-
ation S9 shows that it assigns a high motivational value for performing behav-
ior B, possibly because a goal situation is easily reachable from S9, and thus
an agent would seck a state in which it was able to execute this behavior.

Exporting Genomes: Lamarckian and Darwinian Way

The emotion learning matrix above shows the emotion evaluation string
computed from the learning process. That string is a part of the exporting env-
operon. That string is sent to the genetic environment to be assimilated by a
new species that will later appear in the same behavioral environment. We
assume that the output genome consists of several chromosomes, the env-oper-
on being encoded as a separate chromosome. We also assume that this partic-
ular chromosome is not subject to a crossover process. However, crossover may
take place among some other genes of the genome. So, as a result of the
genome exporting computation, a mature agent (after learning) would be able
to export, as a part of its genome, the following Lamarckian chromosome:

Lamarckian.output_chromosome ! (speciesA) = (0OAOOOOBO)

That is the case if genetic environment allows a Lamarckian evolution, the
one where genetic information is acquired as a process of learning. To control
the Lamarckian-type evolution, some threshold mechanism could be includ-
ed in the genome exporting computation. If the exporting algorithm is of
Darwinian type, then the export chromosome can be the same as the input
Darwinian chromosome:

212 BOZINOVSKI AND BOZINOVSKA

Darwinian.output_chromosome I (speciesA) = (OOBOOOO00)

and some difference could occur only due to processes like mutation and
crossover, rather then due to a learning process.

Ilustration of the Theory: Simulation Experiment

We will now consider a simulation experiment in order to illustrate the pre-
sented theory. We will describe the genetic environment, the agent, the
behavioral environment, and the result of the experiment in the behavioral
environment, along with the emotion-motivation structure learned in the
agent’s memory.

Genetic environment. We assume a behavioral environment inhabited with
two species, R1 and R2. That environment is connected to the genetic envi-
ronment with two genomes, representing the mentioned species. Let us assume
that the env-operons of both species are acquired by chromosomes having dif-
ferent encoding genes. Let the input chromosomes for the species be:

input_chromosome (R1) = (OOO00000OB0O000S0000®)
input_chromosome (R2) = (0000000 BOBO000OC000®)

This means that the sensory systems of both species can distinguish 20 situa-
tions in the environment. For both species, the situation 15 is considered desir-
able, while situations 10 and 20 are considered undesirable ones. The species
R1 will consider situation 8 as neutral, while species R2 will consider it dan-
gerous. The behaviors are executed with the same cost, such that the cost does
not play a significant role in the simulation experiments. As an experimental
hypothesis, it is expected that both species will develop different motivations
and consequently different learned behavior.

The agent. The experiment is designed around the CAA architecture as shown
in Figure 2 above. The CAA architecture is used as a neural controller of the two
species in the experiment. The initial, genetic information about environmental
situations is received through the genetic environment. The learning process is
carried out through interaction with the behavioral environment. The memory
matrix is used as a representation of the synaptic weights of the whole neural net-
work. The learning routine is following: suppose in a situation s, a behavior b is
executed and as a consequence a new situation is obtained from the environment.
The new situation is evaluated on desirability, depending on either genetic infor-
mation or learning information in the matrix column addressed by the received
situation. Emotion is computed and is sent as a sighal to the whole memory struc-
ture. Only one element, 9 (b/s), is updated by that emotion information (the
one that indeed produced a behavior b in situation s, and is thus responsible for
receiving the current situation as a consequence).

EVOLVING COGNITION FROM A MODULON GENOME 213

The agent—environment interaction. We can now go on to discuss the parallel
programming version of the CAA agent computational procedure used in the
experiment. Here (#/%) means matrix and (+/s) means column vector. The pro-
gram below contains two threads, CAA_agent and Behavioral_environment,
that exchange informarion using the post/wait communication mechanism.

program CAA: agent—environment interaction
define environment graph s'(:/*);
choose initial situation s . s' = s
thread CAA _agent
import genome;
initialize crossbar elements 9 (*/#) from the imported genome;
repeat
state s = §';
compute behavior b from $(*/s);
post b;
wait §';
compute emotion signal ©'(s') from $(x/s');
compute W (b/s) += ©'(s');
until @(simt)= ©;,
compute genome export from § (x/x*);
export genome;

init?

thread Behavioral_environment

repeat
situation s = s';
wait b;
compute next situation s' = s'(b/s);
post s';
forever;

The personality module, which is kind of an operating system for the whole
CAA architecture, decides the end of the learning process. In learning how
to behave in an environment (as is the case in this experiment), the end of
the learning process is decided when a policy is assigned to the starting situa-
tion, since the policy learning goes backwards. At the end of the learning
process, or at any time before, the personality module might decide to export
a genome about what has been learned so far.

The learning procedure described above in terms of emotional and motiva-
tional functions is actually a secondary reinforcement learning procedure
(Bozinovski, 1982). The convergence proof of the whole learning procedure
is given in Bozinovski (1995). It is presented here as an illustration of a type
of neural controller that can be evolved from a genome containing a modu-
fon control structure.

214 BOZINOVSKI AND BOZINOVSKA

Behavioral environment. For this experiment we chose an environment with
20 situations. [t inhabits both the species R1 and R2. The situations 10 and
20 contain repellers for both the species, and situation 15 contains an attrac-
tor for both the species, and that has been reflected in the env-operon of the
imported genome. Situation 8 carries no genetic message to species R1 but is
reflected in the genome of the species R2 as an undesirable situation. Both
species have S6 as the starting situation, and it is expected that both will learn
a policy that will eventually lead them to the state 15.

Result of the experiment. Figure 5 shows the result of the behavior experiment
in a behavioral environment that corresponds to the given genome from the
genetic environment.

e

i N
e
.:.‘_',r-."f\ \

[T

o s &
SRR
AY

Figure 5: Learned behaviors in the species R1 and R2 due to different motivational
mental representations of the environment.

This shows that as the result of developed plans in their mental representa-
tions, the two species indeed exhibit different behaviors in the same behav-

EVOLVING COGNITION FROM A MODULON GENOME 215

ioral environment, as hypothesized. The next matrix shows the final state of
the memory of species R2 after the learning process that established the behay-
ior shown in Figure 5.

situation It2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20]
Ist neuron === 2 =290 =8 =39 29wQ =~ =~ ¢vsvd)
Ind neuron = = = ¥ 2B =B = =2 = =0 =~ = = = @]
3rd neuron [~ 2 = & = =0 =B = =590 = = =~ £ @

The matrix above shows the developed plan in the agent’s mental representa-
tion for behaving in its behavioral environment. The plan is represented by
the sequence of states 6—7—12-13-18-19-14-15 and is developed by learning
a partial policy for behaving in this environment. As we can see, in some
states (for example, situations 1, 2, 9, 11, 16, and 17) the agent will tend to
execute the default behavior, which can be a random walk. In some situations
(3, 5, 13, and 19) the agent has experienced undesirable consequences of
some behaviors, and has memorized negative motivations for performing
those behaviors. Note that what has been learned in the mental representa-
tion of the agent R2 is a kind of hill-climbing procedure. It is a mentally rep-
resented hill of motivational values (¥—>2¥—39—>59—6¥—>8¥—99O)
that has been built by the learning process. Finding itself on any level of the
hill, the species will know how to proceed toward the goal.

Conclusion

The present work addresses a fundamental question in evolutionary biology
and cognitive science: how to evolve, from its genome, a neural network that
will be able to control agents capable of showing learning behavior. In particu-
lar, it considers the question of how that genome should be constructed. The
framework used is the consequence driven systems theory. The basic result of
this research is that in order to build such an evolvable agent we need to start
with a structured genome, the one that contains hierarchical control structures
such as modulons, regulons, and operons, for controlling various types of genes.
The paper considers three stages of evolving a neural controller: (1) from
genome to the first neural cells, (2) from neural cells to a neural assembly that
functions as a whole, and finally (3) from the basic neural assembly to various
instances of learning systems developed by growing axon connections. The
paper also illustrates a mechanism how the genetic environment is related to
the behavioral environment of an agent. It shows a mechanism by which genet-
ic environment assigns initial emotional values of some behavioral environ-
ment situations. Having those situations as attractors and repellers, and using
some motivation backpropagation mechanism in its learning process, a learning
agent is able to build a policy for behaving in the behavioral environment.

216 BOZINOVSKI AND BOZINOVSKA

References

Barto, A. (1997). Reinforcement learning. In O. Omidvar and D. Elliot (Eds.), Neural systems for
control (pp. 7-30). San Diego, California: Academic Press.

Barto, A., Sutton, R., and Anderson C. (1983). Neuronlike elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, 13, 834-846.

Barto, A., Sutton, R., and Watkins C. (1990). Learning with sequential decision making. In M.
Gabriel and J. Moore (Eds.), Learning and computational newroscience: Fundamentals of adaptive
networks (pp. 539-602). Cambridge, Massachusetts: The MIT Press.

Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.

Bozinovski, S. (1981a). A self-learning system using secondary reinforcement: Report on the CAA
network, ANW group report, November 25, COINS Department, University of Massachusetts
at Amherst.

Bozinovski, S. (1981h). Inverted pendulum learning control. ANW Memo, December 10, COINS
Department, University of Massachusetts at Amherst.

Bozinovski, S. (1982). A self-learning system using secondary reinforcement. In R.Trappl (Ed.),
Cybernetics and systems research (pp. 397-402). Amsterdam: North Holland.

Bozinovski, S. (1995). Consequence driven systems. Bitola, Macedonia: Gocmar Press.

Bozinovski, S. (2003). Anticipation driven artificial personality: Building on Lewin and Loehlin.
In M. Butz, O. Sigaud, and P. Gerard (Eds.), Anticipatory behavior in adaptive learning systems
(pp. 133-150). Berlin: Springer Verlag.

Bozinovski, S., and Bozinovska, L. (2001). Self-learning agents: A connectionist theoty of emo-
tion based on crossbar value judgment. Cybernetics and Systems: An International Jowrnal, 32,
637-669.

Brown, T (1998). Genetics: A molecular approach. London: Chapman and Hall.

Bull, L. (1997). On the evolution of multicellularity. In P. Husbands and 1. Harvey (Eds.), Fourth
European Conference on Astificial Life. Cambridge, Massachusetts: The MIT Press.

Cangelosi, A., Parisi, D., and Nolfi, S. (1994). Cell division and migration in a “genotype” for
neural networks, Network, 5, 497-515.

Eggenberger, P. (1997). Creation of neural networks based on developmental and evolutionary
principles. International Conference on Antificial Newral Networks, ICANN '97, Lausanne,
Switzerland.

Elman, J. (1993). Learning and development in neural networks: The importance of starting
small. Cognition, 48, 71-99.

Gadanho, S. (1999). Reinforcement learning in autonomous robots: An empirical investigation
of the role of emotions. Doctoral dissertation, University of Edinburgh, Edinburgh, Scotland.

Gruau, F, and Whitley, D. (1993). Adding learning to the cellular development of neural net-
works. Evolutionary Computation, 1(3), 213-233.

Loehlin,]. (1968). Computer models of personality. New York: Random House.

Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic plasticity in evolving neural networks.
In D. Graussier and J-D. Nicoud (Eds.), From perception to action, conference proceedings (pp-
146-157). Los Alamitos, California: IEEE Computer Society Press.

Peshkin, L., and Savova, V. (2002). On the biological plausibility of reinforcement learning by
policy search. Sixth International Conference on Cognitive and Neural Systems. Boston,
Massachusetts: Boston University Press.

Reil, T. (1999). Dynamics of gene expression in an artificial gene — implications for biological
and artificial ontogeny. In D. Floreano, E Mondada, and J-D. Nicoud (Eds.), Fifth European
Conference on Antificial Life. Berlin: Springer Verlag.

Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on approx-
imate dynamic programming. In B. Porter and R. Mooney (Eds.), Machine Learning: Proceedings
of the Seventh Intemational Conference (pp. 216-224). San Mateo, California: Morgan Kaufimann.

Vaario, J., Ogata, N., and Shimohara, K. (1997). Synthesis of environment directed and genetic
growth. Artificial Life V (pp. 244-251). Cambridge, Massachusetts: The MIT Press.

Watkins, C. (1989). Learning from delayed rewards. Ph.D. Thesis, King’s College, Cambridge,
United Kingdom.

